Simulation of the CO2 hydrate–water interfacial energy: The mold integration–guest methodology

The growth pattern and nucleation rate of carbon dioxide hydrate critically depend on the precise value of the hydrate–water interfacial free energy. There exist in the literature only two independent experimental measurements of this thermodynamic magnitude: one obtained by Uchida et al. [J. Phys....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2022-10, Vol.157 (13), p.134709-134709
Hauptverfasser: Zerón, Iván M., Míguez, José Manuel, Mendiboure, Bruno, Algaba, Jesús, Blas, Felipe J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 134709
container_issue 13
container_start_page 134709
container_title The Journal of chemical physics
container_volume 157
creator Zerón, Iván M.
Míguez, José Manuel
Mendiboure, Bruno
Algaba, Jesús
Blas, Felipe J.
description The growth pattern and nucleation rate of carbon dioxide hydrate critically depend on the precise value of the hydrate–water interfacial free energy. There exist in the literature only two independent experimental measurements of this thermodynamic magnitude: one obtained by Uchida et al. [J. Phys. Chem. B 106, 8202 (2002)], 28(6) mJ/m2, and the other by Anderson and co-workers [J. Phys. Chem. B 107, 3507 (2003)], 30(3) mJ/m2. Recently, Algaba et al. [J. Colloid Interface Sci. 623, 354 (2022)] have extended the mold integration method proposed by Espinosa and co-workers [J. Chem. Phys. 141, 134709 (2014)] to deal with the CO2 hydrate–water interfacial free energy (mold integration–guest or MI-H). Computer simulations predict a value of 29(2) mJ/m2, in excellent agreement with experimental data. The method is based on the use of a mold of attractive wells located at the crystallographic positions of the oxygen atoms of water molecules in equilibrium hydrate structures to induce the formation of a thin hydrate slab in the liquid phase at coexistence conditions. We propose here a new implementation of the mold integration technique using a mold of attractive wells located now at the crystallographic positions of the carbon atoms of the CO2 molecules in the equilibrium hydrate structure. We find that the new mold integration–guest methodology, which does not introduce positional or orientational information of the water molecules in the hydrate phase, is able to induce the formation of CO2 hydrates in an efficient way. More importantly, this new version of the method predicts a CO2 hydrate–water interfacial energy value of 30(2) mJ/m2, in excellent agreement with experimental data, which is also fully consistent with the results obtained using the previous methodology.
doi_str_mv 10.1063/5.0101746
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2722587189</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2723160934</sourcerecordid><originalsourceid>FETCH-LOGICAL-c290t-e6243998e956b4034f687e8ae5b8b5139cec63843121ec372de7f8485570dade3</originalsourceid><addsrcrecordid>eNp90MtKxDAUBuAgCo6jC9-g4EaFjrk1TdzJ4A0GZuG4Lml72unQNmPSUbrzHXxDn8TMBQUFNzmLfOfn8CN0SvCIYMGuohEmmMRc7KEBwVKFsVB4Hw0wpiRUAotDdOTcAmOPKB-g9KlqVrXuKtMGpgi6OQTjKQ3mfW51B5_vH29-2KBq_VvorNJ1AC3Ysr8OZt42ps43n6XdZPiFcgWuCxro5iY3tSn7Y3RQ6NrByW4O0fPd7Wz8EE6m94_jm0mYUYW7EATlTCkJKhIpx4wXQsYgNUSpTCPCVAaZYJIzQglkLKY5xIXkMopinOsc2BCdb3OX1rysj0iaymVQ17oFs3IJjSkjAivGPT37RRdmZVt_3VrRSMZEKq8utiqzxjkLRbK0VaNtnxCcrNtOomTXtreXW-uyqttU8Y1fjf2ByTIv_sN_k78AN22PAw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2722587189</pqid></control><display><type>article</type><title>Simulation of the CO2 hydrate–water interfacial energy: The mold integration–guest methodology</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Zerón, Iván M. ; Míguez, José Manuel ; Mendiboure, Bruno ; Algaba, Jesús ; Blas, Felipe J.</creator><creatorcontrib>Zerón, Iván M. ; Míguez, José Manuel ; Mendiboure, Bruno ; Algaba, Jesús ; Blas, Felipe J.</creatorcontrib><description>The growth pattern and nucleation rate of carbon dioxide hydrate critically depend on the precise value of the hydrate–water interfacial free energy. There exist in the literature only two independent experimental measurements of this thermodynamic magnitude: one obtained by Uchida et al. [J. Phys. Chem. B 106, 8202 (2002)], 28(6) mJ/m2, and the other by Anderson and co-workers [J. Phys. Chem. B 107, 3507 (2003)], 30(3) mJ/m2. Recently, Algaba et al. [J. Colloid Interface Sci. 623, 354 (2022)] have extended the mold integration method proposed by Espinosa and co-workers [J. Chem. Phys. 141, 134709 (2014)] to deal with the CO2 hydrate–water interfacial free energy (mold integration–guest or MI-H). Computer simulations predict a value of 29(2) mJ/m2, in excellent agreement with experimental data. The method is based on the use of a mold of attractive wells located at the crystallographic positions of the oxygen atoms of water molecules in equilibrium hydrate structures to induce the formation of a thin hydrate slab in the liquid phase at coexistence conditions. We propose here a new implementation of the mold integration technique using a mold of attractive wells located now at the crystallographic positions of the carbon atoms of the CO2 molecules in the equilibrium hydrate structure. We find that the new mold integration–guest methodology, which does not introduce positional or orientational information of the water molecules in the hydrate phase, is able to induce the formation of CO2 hydrates in an efficient way. More importantly, this new version of the method predicts a CO2 hydrate–water interfacial energy value of 30(2) mJ/m2, in excellent agreement with experimental data, which is also fully consistent with the results obtained using the previous methodology.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0101746</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Carbon dioxide ; Crystallography ; Energy value ; Free energy ; Hydrates ; Interfacial energy ; Liquid phases ; Methodology ; Molds ; Molecular structure ; Nucleation ; Oxygen atoms ; Physics ; Water chemistry</subject><ispartof>The Journal of chemical physics, 2022-10, Vol.157 (13), p.134709-134709</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c290t-e6243998e956b4034f687e8ae5b8b5139cec63843121ec372de7f8485570dade3</citedby><cites>FETCH-LOGICAL-c290t-e6243998e956b4034f687e8ae5b8b5139cec63843121ec372de7f8485570dade3</cites><orcidid>0000-0003-1371-4064 ; 0000-0001-9030-040X ; 0000-0003-0041-8856 ; 0000-0001-8371-5287</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0101746$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4497,27903,27904,76130</link.rule.ids></links><search><creatorcontrib>Zerón, Iván M.</creatorcontrib><creatorcontrib>Míguez, José Manuel</creatorcontrib><creatorcontrib>Mendiboure, Bruno</creatorcontrib><creatorcontrib>Algaba, Jesús</creatorcontrib><creatorcontrib>Blas, Felipe J.</creatorcontrib><title>Simulation of the CO2 hydrate–water interfacial energy: The mold integration–guest methodology</title><title>The Journal of chemical physics</title><description>The growth pattern and nucleation rate of carbon dioxide hydrate critically depend on the precise value of the hydrate–water interfacial free energy. There exist in the literature only two independent experimental measurements of this thermodynamic magnitude: one obtained by Uchida et al. [J. Phys. Chem. B 106, 8202 (2002)], 28(6) mJ/m2, and the other by Anderson and co-workers [J. Phys. Chem. B 107, 3507 (2003)], 30(3) mJ/m2. Recently, Algaba et al. [J. Colloid Interface Sci. 623, 354 (2022)] have extended the mold integration method proposed by Espinosa and co-workers [J. Chem. Phys. 141, 134709 (2014)] to deal with the CO2 hydrate–water interfacial free energy (mold integration–guest or MI-H). Computer simulations predict a value of 29(2) mJ/m2, in excellent agreement with experimental data. The method is based on the use of a mold of attractive wells located at the crystallographic positions of the oxygen atoms of water molecules in equilibrium hydrate structures to induce the formation of a thin hydrate slab in the liquid phase at coexistence conditions. We propose here a new implementation of the mold integration technique using a mold of attractive wells located now at the crystallographic positions of the carbon atoms of the CO2 molecules in the equilibrium hydrate structure. We find that the new mold integration–guest methodology, which does not introduce positional or orientational information of the water molecules in the hydrate phase, is able to induce the formation of CO2 hydrates in an efficient way. More importantly, this new version of the method predicts a CO2 hydrate–water interfacial energy value of 30(2) mJ/m2, in excellent agreement with experimental data, which is also fully consistent with the results obtained using the previous methodology.</description><subject>Carbon dioxide</subject><subject>Crystallography</subject><subject>Energy value</subject><subject>Free energy</subject><subject>Hydrates</subject><subject>Interfacial energy</subject><subject>Liquid phases</subject><subject>Methodology</subject><subject>Molds</subject><subject>Molecular structure</subject><subject>Nucleation</subject><subject>Oxygen atoms</subject><subject>Physics</subject><subject>Water chemistry</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp90MtKxDAUBuAgCo6jC9-g4EaFjrk1TdzJ4A0GZuG4Lml72unQNmPSUbrzHXxDn8TMBQUFNzmLfOfn8CN0SvCIYMGuohEmmMRc7KEBwVKFsVB4Hw0wpiRUAotDdOTcAmOPKB-g9KlqVrXuKtMGpgi6OQTjKQ3mfW51B5_vH29-2KBq_VvorNJ1AC3Ysr8OZt42ps43n6XdZPiFcgWuCxro5iY3tSn7Y3RQ6NrByW4O0fPd7Wz8EE6m94_jm0mYUYW7EATlTCkJKhIpx4wXQsYgNUSpTCPCVAaZYJIzQglkLKY5xIXkMopinOsc2BCdb3OX1rysj0iaymVQ17oFs3IJjSkjAivGPT37RRdmZVt_3VrRSMZEKq8utiqzxjkLRbK0VaNtnxCcrNtOomTXtreXW-uyqttU8Y1fjf2ByTIv_sN_k78AN22PAw</recordid><startdate>20221007</startdate><enddate>20221007</enddate><creator>Zerón, Iván M.</creator><creator>Míguez, José Manuel</creator><creator>Mendiboure, Bruno</creator><creator>Algaba, Jesús</creator><creator>Blas, Felipe J.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1371-4064</orcidid><orcidid>https://orcid.org/0000-0001-9030-040X</orcidid><orcidid>https://orcid.org/0000-0003-0041-8856</orcidid><orcidid>https://orcid.org/0000-0001-8371-5287</orcidid></search><sort><creationdate>20221007</creationdate><title>Simulation of the CO2 hydrate–water interfacial energy: The mold integration–guest methodology</title><author>Zerón, Iván M. ; Míguez, José Manuel ; Mendiboure, Bruno ; Algaba, Jesús ; Blas, Felipe J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c290t-e6243998e956b4034f687e8ae5b8b5139cec63843121ec372de7f8485570dade3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Carbon dioxide</topic><topic>Crystallography</topic><topic>Energy value</topic><topic>Free energy</topic><topic>Hydrates</topic><topic>Interfacial energy</topic><topic>Liquid phases</topic><topic>Methodology</topic><topic>Molds</topic><topic>Molecular structure</topic><topic>Nucleation</topic><topic>Oxygen atoms</topic><topic>Physics</topic><topic>Water chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zerón, Iván M.</creatorcontrib><creatorcontrib>Míguez, José Manuel</creatorcontrib><creatorcontrib>Mendiboure, Bruno</creatorcontrib><creatorcontrib>Algaba, Jesús</creatorcontrib><creatorcontrib>Blas, Felipe J.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zerón, Iván M.</au><au>Míguez, José Manuel</au><au>Mendiboure, Bruno</au><au>Algaba, Jesús</au><au>Blas, Felipe J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulation of the CO2 hydrate–water interfacial energy: The mold integration–guest methodology</atitle><jtitle>The Journal of chemical physics</jtitle><date>2022-10-07</date><risdate>2022</risdate><volume>157</volume><issue>13</issue><spage>134709</spage><epage>134709</epage><pages>134709-134709</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>The growth pattern and nucleation rate of carbon dioxide hydrate critically depend on the precise value of the hydrate–water interfacial free energy. There exist in the literature only two independent experimental measurements of this thermodynamic magnitude: one obtained by Uchida et al. [J. Phys. Chem. B 106, 8202 (2002)], 28(6) mJ/m2, and the other by Anderson and co-workers [J. Phys. Chem. B 107, 3507 (2003)], 30(3) mJ/m2. Recently, Algaba et al. [J. Colloid Interface Sci. 623, 354 (2022)] have extended the mold integration method proposed by Espinosa and co-workers [J. Chem. Phys. 141, 134709 (2014)] to deal with the CO2 hydrate–water interfacial free energy (mold integration–guest or MI-H). Computer simulations predict a value of 29(2) mJ/m2, in excellent agreement with experimental data. The method is based on the use of a mold of attractive wells located at the crystallographic positions of the oxygen atoms of water molecules in equilibrium hydrate structures to induce the formation of a thin hydrate slab in the liquid phase at coexistence conditions. We propose here a new implementation of the mold integration technique using a mold of attractive wells located now at the crystallographic positions of the carbon atoms of the CO2 molecules in the equilibrium hydrate structure. We find that the new mold integration–guest methodology, which does not introduce positional or orientational information of the water molecules in the hydrate phase, is able to induce the formation of CO2 hydrates in an efficient way. More importantly, this new version of the method predicts a CO2 hydrate–water interfacial energy value of 30(2) mJ/m2, in excellent agreement with experimental data, which is also fully consistent with the results obtained using the previous methodology.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0101746</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-1371-4064</orcidid><orcidid>https://orcid.org/0000-0001-9030-040X</orcidid><orcidid>https://orcid.org/0000-0003-0041-8856</orcidid><orcidid>https://orcid.org/0000-0001-8371-5287</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2022-10, Vol.157 (13), p.134709-134709
issn 0021-9606
1089-7690
language eng
recordid cdi_proquest_journals_2722587189
source AIP Journals Complete; Alma/SFX Local Collection
subjects Carbon dioxide
Crystallography
Energy value
Free energy
Hydrates
Interfacial energy
Liquid phases
Methodology
Molds
Molecular structure
Nucleation
Oxygen atoms
Physics
Water chemistry
title Simulation of the CO2 hydrate–water interfacial energy: The mold integration–guest methodology
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T09%3A40%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulation%20of%20the%20CO2%20hydrate%E2%80%93water%20interfacial%20energy:%20The%20mold%20integration%E2%80%93guest%20methodology&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Zer%C3%B3n,%20Iv%C3%A1n%20M.&rft.date=2022-10-07&rft.volume=157&rft.issue=13&rft.spage=134709&rft.epage=134709&rft.pages=134709-134709&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0101746&rft_dat=%3Cproquest_cross%3E2723160934%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2722587189&rft_id=info:pmid/&rfr_iscdi=true