A Data-Driven Packet Routing Algorithm for an Unmanned Aerial Vehicle Swarm: A Multi-Agent Reinforcement Learning Approach

Routing decisions made by unmanned aerial vehicle (UAV) swarms are affected by complex and dynamically changing topologies. A centralized routing algorithm imposes the entire computational burden on one module, and the high data dimensionality renders computation burdensome. In this letter, we devel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE wireless communications letters 2022-10, Vol.11 (10), p.2160-2164
Hauptverfasser: Qiu, Xiulin, Xu, Lei, Wang, Ping, Yang, Yuwang, Liao, Zhenqiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2164
container_issue 10
container_start_page 2160
container_title IEEE wireless communications letters
container_volume 11
creator Qiu, Xiulin
Xu, Lei
Wang, Ping
Yang, Yuwang
Liao, Zhenqiang
description Routing decisions made by unmanned aerial vehicle (UAV) swarms are affected by complex and dynamically changing topologies. A centralized routing algorithm imposes the entire computational burden on one module, and the high data dimensionality renders computation burdensome. In this letter, we develop a multi-agent reinforcement learning-based routing algorithm for a UAV swarm. The UAVs are trained in a data-driven manner to make distributed routing decisions. Factors that include channel quality, UAV movement, UAV overhead, and the extent of neighbor variation are incorporated into link quality assessment. Long short-term memory is used to improve the Actor and Critic networks, and more information on temporal continuity is added to facilitate adaptation to the dynamically changing environment. Simulations show that the proposed routing algorithm reduces data transmission delay and enhances the transmission rate compared with traditional routing algorithms.
doi_str_mv 10.1109/LWC.2022.3195963
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2722546772</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9849115</ieee_id><sourcerecordid>2722546772</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-d00ec2190efa0f0df91bc386ef0a785eab795bfc662ffd8e5ce0d58b240b9ac53</originalsourceid><addsrcrecordid>eNo9kM9LwzAUx4soOHR3wUvAc2eSNm3jrWz-goqiTo8hTV-2zDadaavoX2_mxt7lvQffH_AJgjOCJ4Rgflm8TycUUzqJCGc8iQ6CESUJDWkUs8P9HaXHwbjrVthPggkl2Sj4zdFM9jKcOfMFFj1J9QE9em6H3tgFyutF60y_bJBuHZIWzW0jrYUK5eCMrNEbLI2qAb18S9dcoRw9DHVvwnwB1qeAsd6noNl8BUhn_0PXa9dKtTwNjrSsOxjv9kkwv7l-nd6FxePt_TQvQkU56cMKY1CUcAxaYo0rzUmpoiwBjWWaMZBlylmpVZJQrasMmAJcsaykMS65VCw6CS62ub72c4CuF6t2cNZXCppSyuIkTalX4a1KubbrHGixdqaR7kcQLDaQhYcsNpDFDrK3nG8tBgD2cp7FnBAW_QHln3jN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2722546772</pqid></control><display><type>article</type><title>A Data-Driven Packet Routing Algorithm for an Unmanned Aerial Vehicle Swarm: A Multi-Agent Reinforcement Learning Approach</title><source>IEEE Electronic Library (IEL)</source><creator>Qiu, Xiulin ; Xu, Lei ; Wang, Ping ; Yang, Yuwang ; Liao, Zhenqiang</creator><creatorcontrib>Qiu, Xiulin ; Xu, Lei ; Wang, Ping ; Yang, Yuwang ; Liao, Zhenqiang</creatorcontrib><description>Routing decisions made by unmanned aerial vehicle (UAV) swarms are affected by complex and dynamically changing topologies. A centralized routing algorithm imposes the entire computational burden on one module, and the high data dimensionality renders computation burdensome. In this letter, we develop a multi-agent reinforcement learning-based routing algorithm for a UAV swarm. The UAVs are trained in a data-driven manner to make distributed routing decisions. Factors that include channel quality, UAV movement, UAV overhead, and the extent of neighbor variation are incorporated into link quality assessment. Long short-term memory is used to improve the Actor and Critic networks, and more information on temporal continuity is added to facilitate adaptation to the dynamically changing environment. Simulations show that the proposed routing algorithm reduces data transmission delay and enhances the transmission rate compared with traditional routing algorithms.</description><identifier>ISSN: 2162-2337</identifier><identifier>EISSN: 2162-2345</identifier><identifier>DOI: 10.1109/LWC.2022.3195963</identifier><identifier>CODEN: IWCLAF</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Artificial intelligence ; Autonomous aerial vehicles ; Changing environments ; Data transmission ; data-driven routing ; Decisions ; Heuristic algorithms ; link quality assessment ; LSTM ; Machine learning ; multi-agent reinforcement learning ; Multiagent systems ; Quality assessment ; Route planning ; Routing ; Signal to noise ratio ; Topology ; Transmission rate (communications) ; UAV swarm network ; Unmanned aerial vehicles ; Vehicle dynamics</subject><ispartof>IEEE wireless communications letters, 2022-10, Vol.11 (10), p.2160-2164</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-d00ec2190efa0f0df91bc386ef0a785eab795bfc662ffd8e5ce0d58b240b9ac53</citedby><cites>FETCH-LOGICAL-c291t-d00ec2190efa0f0df91bc386ef0a785eab795bfc662ffd8e5ce0d58b240b9ac53</cites><orcidid>0000-0002-6636-8831 ; 0000-0002-9306-5844 ; 0000-0002-8535-6238 ; 0000-0002-1599-5480</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9849115$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9849115$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Qiu, Xiulin</creatorcontrib><creatorcontrib>Xu, Lei</creatorcontrib><creatorcontrib>Wang, Ping</creatorcontrib><creatorcontrib>Yang, Yuwang</creatorcontrib><creatorcontrib>Liao, Zhenqiang</creatorcontrib><title>A Data-Driven Packet Routing Algorithm for an Unmanned Aerial Vehicle Swarm: A Multi-Agent Reinforcement Learning Approach</title><title>IEEE wireless communications letters</title><addtitle>LWC</addtitle><description>Routing decisions made by unmanned aerial vehicle (UAV) swarms are affected by complex and dynamically changing topologies. A centralized routing algorithm imposes the entire computational burden on one module, and the high data dimensionality renders computation burdensome. In this letter, we develop a multi-agent reinforcement learning-based routing algorithm for a UAV swarm. The UAVs are trained in a data-driven manner to make distributed routing decisions. Factors that include channel quality, UAV movement, UAV overhead, and the extent of neighbor variation are incorporated into link quality assessment. Long short-term memory is used to improve the Actor and Critic networks, and more information on temporal continuity is added to facilitate adaptation to the dynamically changing environment. Simulations show that the proposed routing algorithm reduces data transmission delay and enhances the transmission rate compared with traditional routing algorithms.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Autonomous aerial vehicles</subject><subject>Changing environments</subject><subject>Data transmission</subject><subject>data-driven routing</subject><subject>Decisions</subject><subject>Heuristic algorithms</subject><subject>link quality assessment</subject><subject>LSTM</subject><subject>Machine learning</subject><subject>multi-agent reinforcement learning</subject><subject>Multiagent systems</subject><subject>Quality assessment</subject><subject>Route planning</subject><subject>Routing</subject><subject>Signal to noise ratio</subject><subject>Topology</subject><subject>Transmission rate (communications)</subject><subject>UAV swarm network</subject><subject>Unmanned aerial vehicles</subject><subject>Vehicle dynamics</subject><issn>2162-2337</issn><issn>2162-2345</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM9LwzAUx4soOHR3wUvAc2eSNm3jrWz-goqiTo8hTV-2zDadaavoX2_mxt7lvQffH_AJgjOCJ4Rgflm8TycUUzqJCGc8iQ6CESUJDWkUs8P9HaXHwbjrVthPggkl2Sj4zdFM9jKcOfMFFj1J9QE9em6H3tgFyutF60y_bJBuHZIWzW0jrYUK5eCMrNEbLI2qAb18S9dcoRw9DHVvwnwB1qeAsd6noNl8BUhn_0PXa9dKtTwNjrSsOxjv9kkwv7l-nd6FxePt_TQvQkU56cMKY1CUcAxaYo0rzUmpoiwBjWWaMZBlylmpVZJQrasMmAJcsaykMS65VCw6CS62ub72c4CuF6t2cNZXCppSyuIkTalX4a1KubbrHGixdqaR7kcQLDaQhYcsNpDFDrK3nG8tBgD2cp7FnBAW_QHln3jN</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Qiu, Xiulin</creator><creator>Xu, Lei</creator><creator>Wang, Ping</creator><creator>Yang, Yuwang</creator><creator>Liao, Zhenqiang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6636-8831</orcidid><orcidid>https://orcid.org/0000-0002-9306-5844</orcidid><orcidid>https://orcid.org/0000-0002-8535-6238</orcidid><orcidid>https://orcid.org/0000-0002-1599-5480</orcidid></search><sort><creationdate>20221001</creationdate><title>A Data-Driven Packet Routing Algorithm for an Unmanned Aerial Vehicle Swarm: A Multi-Agent Reinforcement Learning Approach</title><author>Qiu, Xiulin ; Xu, Lei ; Wang, Ping ; Yang, Yuwang ; Liao, Zhenqiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-d00ec2190efa0f0df91bc386ef0a785eab795bfc662ffd8e5ce0d58b240b9ac53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Autonomous aerial vehicles</topic><topic>Changing environments</topic><topic>Data transmission</topic><topic>data-driven routing</topic><topic>Decisions</topic><topic>Heuristic algorithms</topic><topic>link quality assessment</topic><topic>LSTM</topic><topic>Machine learning</topic><topic>multi-agent reinforcement learning</topic><topic>Multiagent systems</topic><topic>Quality assessment</topic><topic>Route planning</topic><topic>Routing</topic><topic>Signal to noise ratio</topic><topic>Topology</topic><topic>Transmission rate (communications)</topic><topic>UAV swarm network</topic><topic>Unmanned aerial vehicles</topic><topic>Vehicle dynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qiu, Xiulin</creatorcontrib><creatorcontrib>Xu, Lei</creatorcontrib><creatorcontrib>Wang, Ping</creatorcontrib><creatorcontrib>Yang, Yuwang</creatorcontrib><creatorcontrib>Liao, Zhenqiang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE wireless communications letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Qiu, Xiulin</au><au>Xu, Lei</au><au>Wang, Ping</au><au>Yang, Yuwang</au><au>Liao, Zhenqiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Data-Driven Packet Routing Algorithm for an Unmanned Aerial Vehicle Swarm: A Multi-Agent Reinforcement Learning Approach</atitle><jtitle>IEEE wireless communications letters</jtitle><stitle>LWC</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>11</volume><issue>10</issue><spage>2160</spage><epage>2164</epage><pages>2160-2164</pages><issn>2162-2337</issn><eissn>2162-2345</eissn><coden>IWCLAF</coden><abstract>Routing decisions made by unmanned aerial vehicle (UAV) swarms are affected by complex and dynamically changing topologies. A centralized routing algorithm imposes the entire computational burden on one module, and the high data dimensionality renders computation burdensome. In this letter, we develop a multi-agent reinforcement learning-based routing algorithm for a UAV swarm. The UAVs are trained in a data-driven manner to make distributed routing decisions. Factors that include channel quality, UAV movement, UAV overhead, and the extent of neighbor variation are incorporated into link quality assessment. Long short-term memory is used to improve the Actor and Critic networks, and more information on temporal continuity is added to facilitate adaptation to the dynamically changing environment. Simulations show that the proposed routing algorithm reduces data transmission delay and enhances the transmission rate compared with traditional routing algorithms.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LWC.2022.3195963</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-6636-8831</orcidid><orcidid>https://orcid.org/0000-0002-9306-5844</orcidid><orcidid>https://orcid.org/0000-0002-8535-6238</orcidid><orcidid>https://orcid.org/0000-0002-1599-5480</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2162-2337
ispartof IEEE wireless communications letters, 2022-10, Vol.11 (10), p.2160-2164
issn 2162-2337
2162-2345
language eng
recordid cdi_proquest_journals_2722546772
source IEEE Electronic Library (IEL)
subjects Algorithms
Artificial intelligence
Autonomous aerial vehicles
Changing environments
Data transmission
data-driven routing
Decisions
Heuristic algorithms
link quality assessment
LSTM
Machine learning
multi-agent reinforcement learning
Multiagent systems
Quality assessment
Route planning
Routing
Signal to noise ratio
Topology
Transmission rate (communications)
UAV swarm network
Unmanned aerial vehicles
Vehicle dynamics
title A Data-Driven Packet Routing Algorithm for an Unmanned Aerial Vehicle Swarm: A Multi-Agent Reinforcement Learning Approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T12%3A33%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Data-Driven%20Packet%20Routing%20Algorithm%20for%20an%20Unmanned%20Aerial%20Vehicle%20Swarm:%20A%20Multi-Agent%20Reinforcement%20Learning%20Approach&rft.jtitle=IEEE%20wireless%20communications%20letters&rft.au=Qiu,%20Xiulin&rft.date=2022-10-01&rft.volume=11&rft.issue=10&rft.spage=2160&rft.epage=2164&rft.pages=2160-2164&rft.issn=2162-2337&rft.eissn=2162-2345&rft.coden=IWCLAF&rft_id=info:doi/10.1109/LWC.2022.3195963&rft_dat=%3Cproquest_RIE%3E2722546772%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2722546772&rft_id=info:pmid/&rft_ieee_id=9849115&rfr_iscdi=true