Transition Motion Synthesis for Object Interaction based on Learning Transition Strategies

In this study, we focus on developing a motion synthesis framework that generates a natural transition motion between two different behaviours to interact with a moving object. Specifically, the proposed framework generates the transition motion, bridging from a locomotive behaviour to an object int...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer graphics forum 2022-09, Vol.41 (6), p.37-50
Hauptverfasser: Hwang, Jaepyung, Park, Gangrae, Kwon, Taesoo, Ishii, Shin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 50
container_issue 6
container_start_page 37
container_title Computer graphics forum
container_volume 41
creator Hwang, Jaepyung
Park, Gangrae
Kwon, Taesoo
Ishii, Shin
description In this study, we focus on developing a motion synthesis framework that generates a natural transition motion between two different behaviours to interact with a moving object. Specifically, the proposed framework generates the transition motion, bridging from a locomotive behaviour to an object interaction behaviour. And, the transition motion should adapt to the spatio‐temporal variation of the target object in an online manner, so as to naturally connect the behaviours. To solve this issue, we propose a framework that combines a regression model and a transition motion planner. The neural network‐based regression model estimates the reference transition strategy to guide the reference pattern of the transitioning, adapted to the varying situation. The transition motion planner reconstructs the transition motion based on the reference pattern while considering dynamic constraints that avoid the footskate and interaction constraints. The proposed framework is validated to synthesize various transition motions while adapting to the spatio‐temporal variation of the object by using object grasping motion, and athletic motions in soccer. In this study, we focus on developing a motion synthesis framework that generates a natural transition motion between two different behaviours to interact with a moving object.
doi_str_mv 10.1111/cgf.14499
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2722375753</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2722375753</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3639-605899f41641d1e015f0936eaff0130b742cf171c5e7276c93323c229e7e937a3</originalsourceid><addsrcrecordid>eNp1kD9PQjEUxRujiYgOfoOXODk87P_S0RBBEgwDuLg0pdxiCfZh-4jh21t5Di7e5Zzhd85NDkK3BA9IuQe38QPCudZnqEe4VPVQCn2OepgUr7AQl-gq5y3GmCspeuhtmWzMoQ1NrF6akyyOsX2HHHLlm1TNV1twbTWNLSTrTsDKZlhXxczAphjipvpTsmiTbWETIF-jC293GW5-tY9ex0_L0XM9m0-mo8dZ7ZhkupZYDLX2nEhO1gQwER5rJsF6jwnDK8Wp80QRJ0BRJZ1mjDJHqQYFminL-uiu692n5vMAuTXb5pBieWmoopQpoQQr1H1HudTknMCbfQofNh0NweZnOlOmM6fpCvvQsV9hB8f_QTOajLvENyZZb1g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2722375753</pqid></control><display><type>article</type><title>Transition Motion Synthesis for Object Interaction based on Learning Transition Strategies</title><source>EBSCOhost Business Source Complete</source><source>Access via Wiley Online Library</source><creator>Hwang, Jaepyung ; Park, Gangrae ; Kwon, Taesoo ; Ishii, Shin</creator><creatorcontrib>Hwang, Jaepyung ; Park, Gangrae ; Kwon, Taesoo ; Ishii, Shin</creatorcontrib><description>In this study, we focus on developing a motion synthesis framework that generates a natural transition motion between two different behaviours to interact with a moving object. Specifically, the proposed framework generates the transition motion, bridging from a locomotive behaviour to an object interaction behaviour. And, the transition motion should adapt to the spatio‐temporal variation of the target object in an online manner, so as to naturally connect the behaviours. To solve this issue, we propose a framework that combines a regression model and a transition motion planner. The neural network‐based regression model estimates the reference transition strategy to guide the reference pattern of the transitioning, adapted to the varying situation. The transition motion planner reconstructs the transition motion based on the reference pattern while considering dynamic constraints that avoid the footskate and interaction constraints. The proposed framework is validated to synthesize various transition motions while adapting to the spatio‐temporal variation of the object by using object grasping motion, and athletic motions in soccer. In this study, we focus on developing a motion synthesis framework that generates a natural transition motion between two different behaviours to interact with a moving object.</description><identifier>ISSN: 0167-7055</identifier><identifier>EISSN: 1467-8659</identifier><identifier>DOI: 10.1111/cgf.14499</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>animation ; animation systems ; animation w/constraints ; Behavior ; Motion planning ; Neural networks ; Regression models ; Synthesis</subject><ispartof>Computer graphics forum, 2022-09, Vol.41 (6), p.37-50</ispartof><rights>2022 Eurographics ‐ The European Association for Computer Graphics and John Wiley &amp; Sons Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3639-605899f41641d1e015f0936eaff0130b742cf171c5e7276c93323c229e7e937a3</citedby><cites>FETCH-LOGICAL-c3639-605899f41641d1e015f0936eaff0130b742cf171c5e7276c93323c229e7e937a3</cites><orcidid>0000-0002-2518-063X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fcgf.14499$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fcgf.14499$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Hwang, Jaepyung</creatorcontrib><creatorcontrib>Park, Gangrae</creatorcontrib><creatorcontrib>Kwon, Taesoo</creatorcontrib><creatorcontrib>Ishii, Shin</creatorcontrib><title>Transition Motion Synthesis for Object Interaction based on Learning Transition Strategies</title><title>Computer graphics forum</title><description>In this study, we focus on developing a motion synthesis framework that generates a natural transition motion between two different behaviours to interact with a moving object. Specifically, the proposed framework generates the transition motion, bridging from a locomotive behaviour to an object interaction behaviour. And, the transition motion should adapt to the spatio‐temporal variation of the target object in an online manner, so as to naturally connect the behaviours. To solve this issue, we propose a framework that combines a regression model and a transition motion planner. The neural network‐based regression model estimates the reference transition strategy to guide the reference pattern of the transitioning, adapted to the varying situation. The transition motion planner reconstructs the transition motion based on the reference pattern while considering dynamic constraints that avoid the footskate and interaction constraints. The proposed framework is validated to synthesize various transition motions while adapting to the spatio‐temporal variation of the object by using object grasping motion, and athletic motions in soccer. In this study, we focus on developing a motion synthesis framework that generates a natural transition motion between two different behaviours to interact with a moving object.</description><subject>animation</subject><subject>animation systems</subject><subject>animation w/constraints</subject><subject>Behavior</subject><subject>Motion planning</subject><subject>Neural networks</subject><subject>Regression models</subject><subject>Synthesis</subject><issn>0167-7055</issn><issn>1467-8659</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kD9PQjEUxRujiYgOfoOXODk87P_S0RBBEgwDuLg0pdxiCfZh-4jh21t5Di7e5Zzhd85NDkK3BA9IuQe38QPCudZnqEe4VPVQCn2OepgUr7AQl-gq5y3GmCspeuhtmWzMoQ1NrF6akyyOsX2HHHLlm1TNV1twbTWNLSTrTsDKZlhXxczAphjipvpTsmiTbWETIF-jC293GW5-tY9ex0_L0XM9m0-mo8dZ7ZhkupZYDLX2nEhO1gQwER5rJsF6jwnDK8Wp80QRJ0BRJZ1mjDJHqQYFminL-uiu692n5vMAuTXb5pBieWmoopQpoQQr1H1HudTknMCbfQofNh0NweZnOlOmM6fpCvvQsV9hB8f_QTOajLvENyZZb1g</recordid><startdate>202209</startdate><enddate>202209</enddate><creator>Hwang, Jaepyung</creator><creator>Park, Gangrae</creator><creator>Kwon, Taesoo</creator><creator>Ishii, Shin</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-2518-063X</orcidid></search><sort><creationdate>202209</creationdate><title>Transition Motion Synthesis for Object Interaction based on Learning Transition Strategies</title><author>Hwang, Jaepyung ; Park, Gangrae ; Kwon, Taesoo ; Ishii, Shin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3639-605899f41641d1e015f0936eaff0130b742cf171c5e7276c93323c229e7e937a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>animation</topic><topic>animation systems</topic><topic>animation w/constraints</topic><topic>Behavior</topic><topic>Motion planning</topic><topic>Neural networks</topic><topic>Regression models</topic><topic>Synthesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hwang, Jaepyung</creatorcontrib><creatorcontrib>Park, Gangrae</creatorcontrib><creatorcontrib>Kwon, Taesoo</creatorcontrib><creatorcontrib>Ishii, Shin</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer graphics forum</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hwang, Jaepyung</au><au>Park, Gangrae</au><au>Kwon, Taesoo</au><au>Ishii, Shin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transition Motion Synthesis for Object Interaction based on Learning Transition Strategies</atitle><jtitle>Computer graphics forum</jtitle><date>2022-09</date><risdate>2022</risdate><volume>41</volume><issue>6</issue><spage>37</spage><epage>50</epage><pages>37-50</pages><issn>0167-7055</issn><eissn>1467-8659</eissn><abstract>In this study, we focus on developing a motion synthesis framework that generates a natural transition motion between two different behaviours to interact with a moving object. Specifically, the proposed framework generates the transition motion, bridging from a locomotive behaviour to an object interaction behaviour. And, the transition motion should adapt to the spatio‐temporal variation of the target object in an online manner, so as to naturally connect the behaviours. To solve this issue, we propose a framework that combines a regression model and a transition motion planner. The neural network‐based regression model estimates the reference transition strategy to guide the reference pattern of the transitioning, adapted to the varying situation. The transition motion planner reconstructs the transition motion based on the reference pattern while considering dynamic constraints that avoid the footskate and interaction constraints. The proposed framework is validated to synthesize various transition motions while adapting to the spatio‐temporal variation of the object by using object grasping motion, and athletic motions in soccer. In this study, we focus on developing a motion synthesis framework that generates a natural transition motion between two different behaviours to interact with a moving object.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/cgf.14499</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-2518-063X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0167-7055
ispartof Computer graphics forum, 2022-09, Vol.41 (6), p.37-50
issn 0167-7055
1467-8659
language eng
recordid cdi_proquest_journals_2722375753
source EBSCOhost Business Source Complete; Access via Wiley Online Library
subjects animation
animation systems
animation w/constraints
Behavior
Motion planning
Neural networks
Regression models
Synthesis
title Transition Motion Synthesis for Object Interaction based on Learning Transition Strategies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T20%3A23%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transition%20Motion%20Synthesis%20for%20Object%20Interaction%20based%20on%20Learning%20Transition%20Strategies&rft.jtitle=Computer%20graphics%20forum&rft.au=Hwang,%20Jaepyung&rft.date=2022-09&rft.volume=41&rft.issue=6&rft.spage=37&rft.epage=50&rft.pages=37-50&rft.issn=0167-7055&rft.eissn=1467-8659&rft_id=info:doi/10.1111/cgf.14499&rft_dat=%3Cproquest_cross%3E2722375753%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2722375753&rft_id=info:pmid/&rfr_iscdi=true