Transition Motion Synthesis for Object Interaction based on Learning Transition Strategies
In this study, we focus on developing a motion synthesis framework that generates a natural transition motion between two different behaviours to interact with a moving object. Specifically, the proposed framework generates the transition motion, bridging from a locomotive behaviour to an object int...
Gespeichert in:
Veröffentlicht in: | Computer graphics forum 2022-09, Vol.41 (6), p.37-50 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 50 |
---|---|
container_issue | 6 |
container_start_page | 37 |
container_title | Computer graphics forum |
container_volume | 41 |
creator | Hwang, Jaepyung Park, Gangrae Kwon, Taesoo Ishii, Shin |
description | In this study, we focus on developing a motion synthesis framework that generates a natural transition motion between two different behaviours to interact with a moving object. Specifically, the proposed framework generates the transition motion, bridging from a locomotive behaviour to an object interaction behaviour. And, the transition motion should adapt to the spatio‐temporal variation of the target object in an online manner, so as to naturally connect the behaviours. To solve this issue, we propose a framework that combines a regression model and a transition motion planner. The neural network‐based regression model estimates the reference transition strategy to guide the reference pattern of the transitioning, adapted to the varying situation. The transition motion planner reconstructs the transition motion based on the reference pattern while considering dynamic constraints that avoid the footskate and interaction constraints. The proposed framework is validated to synthesize various transition motions while adapting to the spatio‐temporal variation of the object by using object grasping motion, and athletic motions in soccer.
In this study, we focus on developing a motion synthesis framework that generates a natural transition motion between two different behaviours to interact with a moving object. |
doi_str_mv | 10.1111/cgf.14499 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2722375753</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2722375753</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3639-605899f41641d1e015f0936eaff0130b742cf171c5e7276c93323c229e7e937a3</originalsourceid><addsrcrecordid>eNp1kD9PQjEUxRujiYgOfoOXODk87P_S0RBBEgwDuLg0pdxiCfZh-4jh21t5Di7e5Zzhd85NDkK3BA9IuQe38QPCudZnqEe4VPVQCn2OepgUr7AQl-gq5y3GmCspeuhtmWzMoQ1NrF6akyyOsX2HHHLlm1TNV1twbTWNLSTrTsDKZlhXxczAphjipvpTsmiTbWETIF-jC293GW5-tY9ex0_L0XM9m0-mo8dZ7ZhkupZYDLX2nEhO1gQwER5rJsF6jwnDK8Wp80QRJ0BRJZ1mjDJHqQYFminL-uiu692n5vMAuTXb5pBieWmoopQpoQQr1H1HudTknMCbfQofNh0NweZnOlOmM6fpCvvQsV9hB8f_QTOajLvENyZZb1g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2722375753</pqid></control><display><type>article</type><title>Transition Motion Synthesis for Object Interaction based on Learning Transition Strategies</title><source>EBSCOhost Business Source Complete</source><source>Access via Wiley Online Library</source><creator>Hwang, Jaepyung ; Park, Gangrae ; Kwon, Taesoo ; Ishii, Shin</creator><creatorcontrib>Hwang, Jaepyung ; Park, Gangrae ; Kwon, Taesoo ; Ishii, Shin</creatorcontrib><description>In this study, we focus on developing a motion synthesis framework that generates a natural transition motion between two different behaviours to interact with a moving object. Specifically, the proposed framework generates the transition motion, bridging from a locomotive behaviour to an object interaction behaviour. And, the transition motion should adapt to the spatio‐temporal variation of the target object in an online manner, so as to naturally connect the behaviours. To solve this issue, we propose a framework that combines a regression model and a transition motion planner. The neural network‐based regression model estimates the reference transition strategy to guide the reference pattern of the transitioning, adapted to the varying situation. The transition motion planner reconstructs the transition motion based on the reference pattern while considering dynamic constraints that avoid the footskate and interaction constraints. The proposed framework is validated to synthesize various transition motions while adapting to the spatio‐temporal variation of the object by using object grasping motion, and athletic motions in soccer.
In this study, we focus on developing a motion synthesis framework that generates a natural transition motion between two different behaviours to interact with a moving object.</description><identifier>ISSN: 0167-7055</identifier><identifier>EISSN: 1467-8659</identifier><identifier>DOI: 10.1111/cgf.14499</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>animation ; animation systems ; animation w/constraints ; Behavior ; Motion planning ; Neural networks ; Regression models ; Synthesis</subject><ispartof>Computer graphics forum, 2022-09, Vol.41 (6), p.37-50</ispartof><rights>2022 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3639-605899f41641d1e015f0936eaff0130b742cf171c5e7276c93323c229e7e937a3</citedby><cites>FETCH-LOGICAL-c3639-605899f41641d1e015f0936eaff0130b742cf171c5e7276c93323c229e7e937a3</cites><orcidid>0000-0002-2518-063X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fcgf.14499$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fcgf.14499$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Hwang, Jaepyung</creatorcontrib><creatorcontrib>Park, Gangrae</creatorcontrib><creatorcontrib>Kwon, Taesoo</creatorcontrib><creatorcontrib>Ishii, Shin</creatorcontrib><title>Transition Motion Synthesis for Object Interaction based on Learning Transition Strategies</title><title>Computer graphics forum</title><description>In this study, we focus on developing a motion synthesis framework that generates a natural transition motion between two different behaviours to interact with a moving object. Specifically, the proposed framework generates the transition motion, bridging from a locomotive behaviour to an object interaction behaviour. And, the transition motion should adapt to the spatio‐temporal variation of the target object in an online manner, so as to naturally connect the behaviours. To solve this issue, we propose a framework that combines a regression model and a transition motion planner. The neural network‐based regression model estimates the reference transition strategy to guide the reference pattern of the transitioning, adapted to the varying situation. The transition motion planner reconstructs the transition motion based on the reference pattern while considering dynamic constraints that avoid the footskate and interaction constraints. The proposed framework is validated to synthesize various transition motions while adapting to the spatio‐temporal variation of the object by using object grasping motion, and athletic motions in soccer.
In this study, we focus on developing a motion synthesis framework that generates a natural transition motion between two different behaviours to interact with a moving object.</description><subject>animation</subject><subject>animation systems</subject><subject>animation w/constraints</subject><subject>Behavior</subject><subject>Motion planning</subject><subject>Neural networks</subject><subject>Regression models</subject><subject>Synthesis</subject><issn>0167-7055</issn><issn>1467-8659</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kD9PQjEUxRujiYgOfoOXODk87P_S0RBBEgwDuLg0pdxiCfZh-4jh21t5Di7e5Zzhd85NDkK3BA9IuQe38QPCudZnqEe4VPVQCn2OepgUr7AQl-gq5y3GmCspeuhtmWzMoQ1NrF6akyyOsX2HHHLlm1TNV1twbTWNLSTrTsDKZlhXxczAphjipvpTsmiTbWETIF-jC293GW5-tY9ex0_L0XM9m0-mo8dZ7ZhkupZYDLX2nEhO1gQwER5rJsF6jwnDK8Wp80QRJ0BRJZ1mjDJHqQYFminL-uiu692n5vMAuTXb5pBieWmoopQpoQQr1H1HudTknMCbfQofNh0NweZnOlOmM6fpCvvQsV9hB8f_QTOajLvENyZZb1g</recordid><startdate>202209</startdate><enddate>202209</enddate><creator>Hwang, Jaepyung</creator><creator>Park, Gangrae</creator><creator>Kwon, Taesoo</creator><creator>Ishii, Shin</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-2518-063X</orcidid></search><sort><creationdate>202209</creationdate><title>Transition Motion Synthesis for Object Interaction based on Learning Transition Strategies</title><author>Hwang, Jaepyung ; Park, Gangrae ; Kwon, Taesoo ; Ishii, Shin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3639-605899f41641d1e015f0936eaff0130b742cf171c5e7276c93323c229e7e937a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>animation</topic><topic>animation systems</topic><topic>animation w/constraints</topic><topic>Behavior</topic><topic>Motion planning</topic><topic>Neural networks</topic><topic>Regression models</topic><topic>Synthesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hwang, Jaepyung</creatorcontrib><creatorcontrib>Park, Gangrae</creatorcontrib><creatorcontrib>Kwon, Taesoo</creatorcontrib><creatorcontrib>Ishii, Shin</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer graphics forum</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hwang, Jaepyung</au><au>Park, Gangrae</au><au>Kwon, Taesoo</au><au>Ishii, Shin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transition Motion Synthesis for Object Interaction based on Learning Transition Strategies</atitle><jtitle>Computer graphics forum</jtitle><date>2022-09</date><risdate>2022</risdate><volume>41</volume><issue>6</issue><spage>37</spage><epage>50</epage><pages>37-50</pages><issn>0167-7055</issn><eissn>1467-8659</eissn><abstract>In this study, we focus on developing a motion synthesis framework that generates a natural transition motion between two different behaviours to interact with a moving object. Specifically, the proposed framework generates the transition motion, bridging from a locomotive behaviour to an object interaction behaviour. And, the transition motion should adapt to the spatio‐temporal variation of the target object in an online manner, so as to naturally connect the behaviours. To solve this issue, we propose a framework that combines a regression model and a transition motion planner. The neural network‐based regression model estimates the reference transition strategy to guide the reference pattern of the transitioning, adapted to the varying situation. The transition motion planner reconstructs the transition motion based on the reference pattern while considering dynamic constraints that avoid the footskate and interaction constraints. The proposed framework is validated to synthesize various transition motions while adapting to the spatio‐temporal variation of the object by using object grasping motion, and athletic motions in soccer.
In this study, we focus on developing a motion synthesis framework that generates a natural transition motion between two different behaviours to interact with a moving object.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/cgf.14499</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-2518-063X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-7055 |
ispartof | Computer graphics forum, 2022-09, Vol.41 (6), p.37-50 |
issn | 0167-7055 1467-8659 |
language | eng |
recordid | cdi_proquest_journals_2722375753 |
source | EBSCOhost Business Source Complete; Access via Wiley Online Library |
subjects | animation animation systems animation w/constraints Behavior Motion planning Neural networks Regression models Synthesis |
title | Transition Motion Synthesis for Object Interaction based on Learning Transition Strategies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T20%3A23%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transition%20Motion%20Synthesis%20for%20Object%20Interaction%20based%20on%20Learning%20Transition%20Strategies&rft.jtitle=Computer%20graphics%20forum&rft.au=Hwang,%20Jaepyung&rft.date=2022-09&rft.volume=41&rft.issue=6&rft.spage=37&rft.epage=50&rft.pages=37-50&rft.issn=0167-7055&rft.eissn=1467-8659&rft_id=info:doi/10.1111/cgf.14499&rft_dat=%3Cproquest_cross%3E2722375753%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2722375753&rft_id=info:pmid/&rfr_iscdi=true |