A note on the control of processes exhibiting input multiplicity
Steady state multiplicity can occur in nonlinear systems, and this presents challenges to feedback control. Input multiplicity arises when the same steady state output values can be reached with system inputs at different values. Dynamic systems with input multiplicities equipped with controllers wi...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-10 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Lovelett, Robert J Psarellis, Yorgos M Kevrekidis, Ioannis G Morari, Manfred |
description | Steady state multiplicity can occur in nonlinear systems, and this presents challenges to feedback control. Input multiplicity arises when the same steady state output values can be reached with system inputs at different values. Dynamic systems with input multiplicities equipped with controllers with integral action have multiple stationary points, which may be locally stable or not. This is undesirable for operation. For a 2x2 example system with three stationary points we demonstrate how to design a set of two single loop controllers such that only one of the stationary points is locally stable, thus effectively eliminating the "input multiplicity problem" for control. We also show that when MPC is used for the example system, all three closed-loop stationary points are stable. Depending on the initial value of the input variables, the closed loop system under MPC may converge to different steady state input instances (but the same output steady state). Therefore we computationally explore the basin boundaries of this closed loop system. It is not clear how MPC or other modern nonlinear controllers could be designed so that only specific equilibrium points are stable. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2722012119</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2722012119</sourcerecordid><originalsourceid>FETCH-proquest_journals_27220121193</originalsourceid><addsrcrecordid>eNqNi0EKwjAQAIMgWLR_WPBcSDbW6k0RxQd4Fy1buyUmtdmA_t4efICnOczMRGVorSk2K8SZymPstNa4rrAsbaZ2e_BBCIIHaQnq4GUIDkID_RBqipEi0LvlOwv7B7Dvk8AzOeHecc3yWahpc3OR8h_nank6Xg7nYvxfiaJcu5AGP6orVojaoDFb-1_1BU_ROWE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2722012119</pqid></control><display><type>article</type><title>A note on the control of processes exhibiting input multiplicity</title><source>Free E- Journals</source><creator>Lovelett, Robert J ; Psarellis, Yorgos M ; Kevrekidis, Ioannis G ; Morari, Manfred</creator><creatorcontrib>Lovelett, Robert J ; Psarellis, Yorgos M ; Kevrekidis, Ioannis G ; Morari, Manfred</creatorcontrib><description>Steady state multiplicity can occur in nonlinear systems, and this presents challenges to feedback control. Input multiplicity arises when the same steady state output values can be reached with system inputs at different values. Dynamic systems with input multiplicities equipped with controllers with integral action have multiple stationary points, which may be locally stable or not. This is undesirable for operation. For a 2x2 example system with three stationary points we demonstrate how to design a set of two single loop controllers such that only one of the stationary points is locally stable, thus effectively eliminating the "input multiplicity problem" for control. We also show that when MPC is used for the example system, all three closed-loop stationary points are stable. Depending on the initial value of the input variables, the closed loop system under MPC may converge to different steady state input instances (but the same output steady state). Therefore we computationally explore the basin boundaries of this closed loop system. It is not clear how MPC or other modern nonlinear controllers could be designed so that only specific equilibrium points are stable.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Closed loop systems ; Closed loops ; Controllers ; Dynamical systems ; Feedback control ; Nonlinear control ; Nonlinear systems ; Steady state</subject><ispartof>arXiv.org, 2022-10</ispartof><rights>2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Lovelett, Robert J</creatorcontrib><creatorcontrib>Psarellis, Yorgos M</creatorcontrib><creatorcontrib>Kevrekidis, Ioannis G</creatorcontrib><creatorcontrib>Morari, Manfred</creatorcontrib><title>A note on the control of processes exhibiting input multiplicity</title><title>arXiv.org</title><description>Steady state multiplicity can occur in nonlinear systems, and this presents challenges to feedback control. Input multiplicity arises when the same steady state output values can be reached with system inputs at different values. Dynamic systems with input multiplicities equipped with controllers with integral action have multiple stationary points, which may be locally stable or not. This is undesirable for operation. For a 2x2 example system with three stationary points we demonstrate how to design a set of two single loop controllers such that only one of the stationary points is locally stable, thus effectively eliminating the "input multiplicity problem" for control. We also show that when MPC is used for the example system, all three closed-loop stationary points are stable. Depending on the initial value of the input variables, the closed loop system under MPC may converge to different steady state input instances (but the same output steady state). Therefore we computationally explore the basin boundaries of this closed loop system. It is not clear how MPC or other modern nonlinear controllers could be designed so that only specific equilibrium points are stable.</description><subject>Closed loop systems</subject><subject>Closed loops</subject><subject>Controllers</subject><subject>Dynamical systems</subject><subject>Feedback control</subject><subject>Nonlinear control</subject><subject>Nonlinear systems</subject><subject>Steady state</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNi0EKwjAQAIMgWLR_WPBcSDbW6k0RxQd4Fy1buyUmtdmA_t4efICnOczMRGVorSk2K8SZymPstNa4rrAsbaZ2e_BBCIIHaQnq4GUIDkID_RBqipEi0LvlOwv7B7Dvk8AzOeHecc3yWahpc3OR8h_nank6Xg7nYvxfiaJcu5AGP6orVojaoDFb-1_1BU_ROWE</recordid><startdate>20221005</startdate><enddate>20221005</enddate><creator>Lovelett, Robert J</creator><creator>Psarellis, Yorgos M</creator><creator>Kevrekidis, Ioannis G</creator><creator>Morari, Manfred</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20221005</creationdate><title>A note on the control of processes exhibiting input multiplicity</title><author>Lovelett, Robert J ; Psarellis, Yorgos M ; Kevrekidis, Ioannis G ; Morari, Manfred</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27220121193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Closed loop systems</topic><topic>Closed loops</topic><topic>Controllers</topic><topic>Dynamical systems</topic><topic>Feedback control</topic><topic>Nonlinear control</topic><topic>Nonlinear systems</topic><topic>Steady state</topic><toplevel>online_resources</toplevel><creatorcontrib>Lovelett, Robert J</creatorcontrib><creatorcontrib>Psarellis, Yorgos M</creatorcontrib><creatorcontrib>Kevrekidis, Ioannis G</creatorcontrib><creatorcontrib>Morari, Manfred</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lovelett, Robert J</au><au>Psarellis, Yorgos M</au><au>Kevrekidis, Ioannis G</au><au>Morari, Manfred</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>A note on the control of processes exhibiting input multiplicity</atitle><jtitle>arXiv.org</jtitle><date>2022-10-05</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>Steady state multiplicity can occur in nonlinear systems, and this presents challenges to feedback control. Input multiplicity arises when the same steady state output values can be reached with system inputs at different values. Dynamic systems with input multiplicities equipped with controllers with integral action have multiple stationary points, which may be locally stable or not. This is undesirable for operation. For a 2x2 example system with three stationary points we demonstrate how to design a set of two single loop controllers such that only one of the stationary points is locally stable, thus effectively eliminating the "input multiplicity problem" for control. We also show that when MPC is used for the example system, all three closed-loop stationary points are stable. Depending on the initial value of the input variables, the closed loop system under MPC may converge to different steady state input instances (but the same output steady state). Therefore we computationally explore the basin boundaries of this closed loop system. It is not clear how MPC or other modern nonlinear controllers could be designed so that only specific equilibrium points are stable.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-10 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2722012119 |
source | Free E- Journals |
subjects | Closed loop systems Closed loops Controllers Dynamical systems Feedback control Nonlinear control Nonlinear systems Steady state |
title | A note on the control of processes exhibiting input multiplicity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T13%3A35%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=A%20note%20on%20the%20control%20of%20processes%20exhibiting%20input%20multiplicity&rft.jtitle=arXiv.org&rft.au=Lovelett,%20Robert%20J&rft.date=2022-10-05&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2722012119%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2722012119&rft_id=info:pmid/&rfr_iscdi=true |