Regulated 2D Grayscale Image for Finding Power Quality Abnormalities in Actual Data
It is possible to preserve power quality by classifying and identifying abnormalities. Prior studies focused on enhancing the PQD classification performance in one-dimensional (1D) CNNs. Recently, various image conversion methods have been established to facilitate CNN for PQD classification. PQD is...
Gespeichert in:
Veröffentlicht in: | Journal of physics. Conference series 2022-09, Vol.2347 (1), p.12018 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 12018 |
container_title | Journal of physics. Conference series |
container_volume | 2347 |
creator | Chen, Yeong-Chin Syamsudin, M Berutu, S S |
description | It is possible to preserve power quality by classifying and identifying abnormalities. Prior studies focused on enhancing the PQD classification performance in one-dimensional (1D) CNNs. Recently, various image conversion methods have been established to facilitate CNN for PQD classification. PQD is a 1D signal that needs to be converted to a 2D image through data pre-processing since 2D images may include more PQD information than 1D signals. However, the PQD data used for the power quality classifier is synthetic PQD produced using mathematical models with parameter modifications in accordance with IEEE Std. 1159, which places limitations on prior research. This study uses data from the Amrita Honeywell Hackathon 2021 to examine how the response-based 2D deep CNN power quality classifier responds to actual field power quality disruptions. The results of the study show that a 2D deep CNN with regulated 2D grayscale pictures based on a process-regulated 2D image matrix can classify real data power quality disturbances with accuracy, precision, recall, and F1-score of 98.80%, 98.99%, and 98.60%, respectively. Additionally, 2D images can potentially contain more PQD data than 1D signals, enhancing identification performance on actual data. |
doi_str_mv | 10.1088/1742-6596/2347/1/012018 |
format | Article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2721704469</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2721704469</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3288-ffbaba490f9e98d887b1ffc05bba06fb84054af1d43892991905c8f3254563713</originalsourceid><addsrcrecordid>eNqFkF1LwzAUhoMoOKe_wYB3Qm2-2iSXY3NzMnA6vQ5pm4yOrq1Jy9i_t6UyEQTPzTlwnnNeeAC4xegBIyFCzBkJ4kjGIaGMhzhEmCAszsDotDk_zUJcgivvdwjRrvgIbN7Mti10YzJIZnDh9NGnujBwuddbA23l4Dwvs7zcwnV1MA6-trrImyOcJGXl9v2cGw_zEk7SplvBmW70NbiwuvDm5ruPwcf88X36FKxeFsvpZBWklAgRWJvoRDOJrDRSZELwBFuboihJNIptIhiKmLY4Y1RIIiWWKEqFpSRiUUw5pmNwN_ytXfXZGt-oXdW6sotUhBPMEWOx7Cg-UKmrvHfGqtrle-2OCiPVG1S9G9V7Ur1BhdVgsLu8Hy7zqv55_byebn6Dqs5sB9M_4P8ivgD0u37I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2721704469</pqid></control><display><type>article</type><title>Regulated 2D Grayscale Image for Finding Power Quality Abnormalities in Actual Data</title><source>IOP Publishing Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>IOPscience extra</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Chen, Yeong-Chin ; Syamsudin, M ; Berutu, S S</creator><creatorcontrib>Chen, Yeong-Chin ; Syamsudin, M ; Berutu, S S</creatorcontrib><description>It is possible to preserve power quality by classifying and identifying abnormalities. Prior studies focused on enhancing the PQD classification performance in one-dimensional (1D) CNNs. Recently, various image conversion methods have been established to facilitate CNN for PQD classification. PQD is a 1D signal that needs to be converted to a 2D image through data pre-processing since 2D images may include more PQD information than 1D signals. However, the PQD data used for the power quality classifier is synthetic PQD produced using mathematical models with parameter modifications in accordance with IEEE Std. 1159, which places limitations on prior research. This study uses data from the Amrita Honeywell Hackathon 2021 to examine how the response-based 2D deep CNN power quality classifier responds to actual field power quality disruptions. The results of the study show that a 2D deep CNN with regulated 2D grayscale pictures based on a process-regulated 2D image matrix can classify real data power quality disturbances with accuracy, precision, recall, and F1-score of 98.80%, 98.99%, and 98.60%, respectively. Additionally, 2D images can potentially contain more PQD data than 1D signals, enhancing identification performance on actual data.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/2347/1/012018</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Abnormalities ; Classifiers ; Gray scale ; Image classification ; Image enhancement ; Image quality ; Parameter modification ; Physics</subject><ispartof>Journal of physics. Conference series, 2022-09, Vol.2347 (1), p.12018</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>Published under licence by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3288-ffbaba490f9e98d887b1ffc05bba06fb84054af1d43892991905c8f3254563713</citedby><cites>FETCH-LOGICAL-c3288-ffbaba490f9e98d887b1ffc05bba06fb84054af1d43892991905c8f3254563713</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1742-6596/2347/1/012018/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,27924,27925,38868,38890,53840,53867</link.rule.ids></links><search><creatorcontrib>Chen, Yeong-Chin</creatorcontrib><creatorcontrib>Syamsudin, M</creatorcontrib><creatorcontrib>Berutu, S S</creatorcontrib><title>Regulated 2D Grayscale Image for Finding Power Quality Abnormalities in Actual Data</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>It is possible to preserve power quality by classifying and identifying abnormalities. Prior studies focused on enhancing the PQD classification performance in one-dimensional (1D) CNNs. Recently, various image conversion methods have been established to facilitate CNN for PQD classification. PQD is a 1D signal that needs to be converted to a 2D image through data pre-processing since 2D images may include more PQD information than 1D signals. However, the PQD data used for the power quality classifier is synthetic PQD produced using mathematical models with parameter modifications in accordance with IEEE Std. 1159, which places limitations on prior research. This study uses data from the Amrita Honeywell Hackathon 2021 to examine how the response-based 2D deep CNN power quality classifier responds to actual field power quality disruptions. The results of the study show that a 2D deep CNN with regulated 2D grayscale pictures based on a process-regulated 2D image matrix can classify real data power quality disturbances with accuracy, precision, recall, and F1-score of 98.80%, 98.99%, and 98.60%, respectively. Additionally, 2D images can potentially contain more PQD data than 1D signals, enhancing identification performance on actual data.</description><subject>Abnormalities</subject><subject>Classifiers</subject><subject>Gray scale</subject><subject>Image classification</subject><subject>Image enhancement</subject><subject>Image quality</subject><subject>Parameter modification</subject><subject>Physics</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkF1LwzAUhoMoOKe_wYB3Qm2-2iSXY3NzMnA6vQ5pm4yOrq1Jy9i_t6UyEQTPzTlwnnNeeAC4xegBIyFCzBkJ4kjGIaGMhzhEmCAszsDotDk_zUJcgivvdwjRrvgIbN7Mti10YzJIZnDh9NGnujBwuddbA23l4Dwvs7zcwnV1MA6-trrImyOcJGXl9v2cGw_zEk7SplvBmW70NbiwuvDm5ruPwcf88X36FKxeFsvpZBWklAgRWJvoRDOJrDRSZELwBFuboihJNIptIhiKmLY4Y1RIIiWWKEqFpSRiUUw5pmNwN_ytXfXZGt-oXdW6sotUhBPMEWOx7Cg-UKmrvHfGqtrle-2OCiPVG1S9G9V7Ur1BhdVgsLu8Hy7zqv55_byebn6Dqs5sB9M_4P8ivgD0u37I</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Chen, Yeong-Chin</creator><creator>Syamsudin, M</creator><creator>Berutu, S S</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20220901</creationdate><title>Regulated 2D Grayscale Image for Finding Power Quality Abnormalities in Actual Data</title><author>Chen, Yeong-Chin ; Syamsudin, M ; Berutu, S S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3288-ffbaba490f9e98d887b1ffc05bba06fb84054af1d43892991905c8f3254563713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Abnormalities</topic><topic>Classifiers</topic><topic>Gray scale</topic><topic>Image classification</topic><topic>Image enhancement</topic><topic>Image quality</topic><topic>Parameter modification</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Yeong-Chin</creatorcontrib><creatorcontrib>Syamsudin, M</creatorcontrib><creatorcontrib>Berutu, S S</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Yeong-Chin</au><au>Syamsudin, M</au><au>Berutu, S S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regulated 2D Grayscale Image for Finding Power Quality Abnormalities in Actual Data</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2022-09-01</date><risdate>2022</risdate><volume>2347</volume><issue>1</issue><spage>12018</spage><pages>12018-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>It is possible to preserve power quality by classifying and identifying abnormalities. Prior studies focused on enhancing the PQD classification performance in one-dimensional (1D) CNNs. Recently, various image conversion methods have been established to facilitate CNN for PQD classification. PQD is a 1D signal that needs to be converted to a 2D image through data pre-processing since 2D images may include more PQD information than 1D signals. However, the PQD data used for the power quality classifier is synthetic PQD produced using mathematical models with parameter modifications in accordance with IEEE Std. 1159, which places limitations on prior research. This study uses data from the Amrita Honeywell Hackathon 2021 to examine how the response-based 2D deep CNN power quality classifier responds to actual field power quality disruptions. The results of the study show that a 2D deep CNN with regulated 2D grayscale pictures based on a process-regulated 2D image matrix can classify real data power quality disturbances with accuracy, precision, recall, and F1-score of 98.80%, 98.99%, and 98.60%, respectively. Additionally, 2D images can potentially contain more PQD data than 1D signals, enhancing identification performance on actual data.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/2347/1/012018</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-6588 |
ispartof | Journal of physics. Conference series, 2022-09, Vol.2347 (1), p.12018 |
issn | 1742-6588 1742-6596 |
language | eng |
recordid | cdi_proquest_journals_2721704469 |
source | IOP Publishing Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; IOPscience extra; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Abnormalities Classifiers Gray scale Image classification Image enhancement Image quality Parameter modification Physics |
title | Regulated 2D Grayscale Image for Finding Power Quality Abnormalities in Actual Data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T11%3A49%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regulated%202D%20Grayscale%20Image%20for%20Finding%20Power%20Quality%20Abnormalities%20in%20Actual%20Data&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Chen,%20Yeong-Chin&rft.date=2022-09-01&rft.volume=2347&rft.issue=1&rft.spage=12018&rft.pages=12018-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/2347/1/012018&rft_dat=%3Cproquest_iop_j%3E2721704469%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2721704469&rft_id=info:pmid/&rfr_iscdi=true |