Non-ideal instabilities in sinusoidal shear flows with a streamwise magnetic field

We investigate the linear stability of a sinusoidal shear flow with an initially uniform streamwise magnetic field in the framework of incompressible magnetohydrodynamics (MHD) with finite resistivity and viscosity. This flow is known to be unstable to the Kelvin–Helmholtz instability in the hydrody...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 2022-10, Vol.949, Article A43
Hauptverfasser: Fraser, A.E., Cresswell, I.G., Garaud, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Journal of fluid mechanics
container_volume 949
creator Fraser, A.E.
Cresswell, I.G.
Garaud, P.
description We investigate the linear stability of a sinusoidal shear flow with an initially uniform streamwise magnetic field in the framework of incompressible magnetohydrodynamics (MHD) with finite resistivity and viscosity. This flow is known to be unstable to the Kelvin–Helmholtz instability in the hydrodynamic case. The same is true in ideal MHD, where dissipation is neglected, provided the magnetic field strength does not exceed a critical threshold beyond which magnetic tension stabilizes the flow. Here, we demonstrate that including viscosity and resistivity introduces two new modes of instability. One of these modes, which we refer to as an Alfvénic Dubrulle–Frisch instability, exists for any non-zero magnetic field strength as long as the magnetic Prandtl number ${{{Pm}}} < 1$. We present a reduced model for this instability that reveals its excitation mechanism to be the negative eddy viscosity of periodic shear flows described by Dubrulle & Frisch (Phys. Rev. A, vol. 43, 1991, pp. 5355–5364). Finally, we demonstrate numerically that this mode saturates in a quasi-stationary state dominated by counter-propagating solitons.
doi_str_mv 10.1017/jfm.2022.782
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2721539779</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2022_782</cupid><sourcerecordid>2721539779</sourcerecordid><originalsourceid>FETCH-LOGICAL-c302t-184bf454008fde3f526b41dce17b2810739b91c387939a3e0c82f0d1ad8af1e63</originalsourceid><addsrcrecordid>eNptkEtLAzEQx4MoWKs3P0DAq7tmkt3N7lGKLygKoueQ3UzalH3UJKX47Y204MXTMDP_B_wIuQaWAwN5t7FDzhnnuaz5CZlBUTWZrIrylMxYOmcAnJ2TixA2jIFgjZyR99dpzJxB3VM3hqhb17voMKSNBjfuwuRM-oU1ak9tP-0D3bu4ppqG6FEPexeQDno1YnQdtQ57c0nOrO4DXh3nnHw-PnwsnrPl29PL4n6ZdYLxmEFdtLYoC8Zqa1DYkldtAaZDkC2vgUnRtA10opaNaLRA1tXcMgPa1NoCVmJObg65Wz997TBEtZl2fkyViksOpWhkss7J7UHV-SkEj1ZtvRu0_1bA1C81laipX2oqUUvy_CjXQ-udWeFf6r-GH1J5byQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2721539779</pqid></control><display><type>article</type><title>Non-ideal instabilities in sinusoidal shear flows with a streamwise magnetic field</title><source>Cambridge University Press Journals Complete</source><creator>Fraser, A.E. ; Cresswell, I.G. ; Garaud, P.</creator><creatorcontrib>Fraser, A.E. ; Cresswell, I.G. ; Garaud, P.</creatorcontrib><description>We investigate the linear stability of a sinusoidal shear flow with an initially uniform streamwise magnetic field in the framework of incompressible magnetohydrodynamics (MHD) with finite resistivity and viscosity. This flow is known to be unstable to the Kelvin–Helmholtz instability in the hydrodynamic case. The same is true in ideal MHD, where dissipation is neglected, provided the magnetic field strength does not exceed a critical threshold beyond which magnetic tension stabilizes the flow. Here, we demonstrate that including viscosity and resistivity introduces two new modes of instability. One of these modes, which we refer to as an Alfvénic Dubrulle–Frisch instability, exists for any non-zero magnetic field strength as long as the magnetic Prandtl number ${{{Pm}}} &lt; 1$. We present a reduced model for this instability that reveals its excitation mechanism to be the negative eddy viscosity of periodic shear flows described by Dubrulle &amp; Frisch (Phys. Rev. A, vol. 43, 1991, pp. 5355–5364). Finally, we demonstrate numerically that this mode saturates in a quasi-stationary state dominated by counter-propagating solitons.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2022.782</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Approximation ; Eddy viscosity ; Electrical resistivity ; Field strength ; Flow stability ; Fluid flow ; Incompressible flow ; Instability ; JFM Papers ; Kelvin-helmholtz instability ; Magnetic field ; Magnetic fields ; Magnetohydrodynamics ; Prandtl number ; Shear flow ; Sine waves ; Solitary waves ; Solitons ; Viscosity</subject><ispartof>Journal of fluid mechanics, 2022-10, Vol.949, Article A43</ispartof><rights>The Author(s), 2022. Published by Cambridge University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c302t-184bf454008fde3f526b41dce17b2810739b91c387939a3e0c82f0d1ad8af1e63</citedby><cites>FETCH-LOGICAL-c302t-184bf454008fde3f526b41dce17b2810739b91c387939a3e0c82f0d1ad8af1e63</cites><orcidid>0000-0002-6266-8941 ; 0000-0003-4323-2082 ; 0000-0002-4538-7320</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112022007820/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,777,781,27905,27906,55609</link.rule.ids></links><search><creatorcontrib>Fraser, A.E.</creatorcontrib><creatorcontrib>Cresswell, I.G.</creatorcontrib><creatorcontrib>Garaud, P.</creatorcontrib><title>Non-ideal instabilities in sinusoidal shear flows with a streamwise magnetic field</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>We investigate the linear stability of a sinusoidal shear flow with an initially uniform streamwise magnetic field in the framework of incompressible magnetohydrodynamics (MHD) with finite resistivity and viscosity. This flow is known to be unstable to the Kelvin–Helmholtz instability in the hydrodynamic case. The same is true in ideal MHD, where dissipation is neglected, provided the magnetic field strength does not exceed a critical threshold beyond which magnetic tension stabilizes the flow. Here, we demonstrate that including viscosity and resistivity introduces two new modes of instability. One of these modes, which we refer to as an Alfvénic Dubrulle–Frisch instability, exists for any non-zero magnetic field strength as long as the magnetic Prandtl number ${{{Pm}}} &lt; 1$. We present a reduced model for this instability that reveals its excitation mechanism to be the negative eddy viscosity of periodic shear flows described by Dubrulle &amp; Frisch (Phys. Rev. A, vol. 43, 1991, pp. 5355–5364). Finally, we demonstrate numerically that this mode saturates in a quasi-stationary state dominated by counter-propagating solitons.</description><subject>Approximation</subject><subject>Eddy viscosity</subject><subject>Electrical resistivity</subject><subject>Field strength</subject><subject>Flow stability</subject><subject>Fluid flow</subject><subject>Incompressible flow</subject><subject>Instability</subject><subject>JFM Papers</subject><subject>Kelvin-helmholtz instability</subject><subject>Magnetic field</subject><subject>Magnetic fields</subject><subject>Magnetohydrodynamics</subject><subject>Prandtl number</subject><subject>Shear flow</subject><subject>Sine waves</subject><subject>Solitary waves</subject><subject>Solitons</subject><subject>Viscosity</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkEtLAzEQx4MoWKs3P0DAq7tmkt3N7lGKLygKoueQ3UzalH3UJKX47Y204MXTMDP_B_wIuQaWAwN5t7FDzhnnuaz5CZlBUTWZrIrylMxYOmcAnJ2TixA2jIFgjZyR99dpzJxB3VM3hqhb17voMKSNBjfuwuRM-oU1ak9tP-0D3bu4ppqG6FEPexeQDno1YnQdtQ57c0nOrO4DXh3nnHw-PnwsnrPl29PL4n6ZdYLxmEFdtLYoC8Zqa1DYkldtAaZDkC2vgUnRtA10opaNaLRA1tXcMgPa1NoCVmJObg65Wz997TBEtZl2fkyViksOpWhkss7J7UHV-SkEj1ZtvRu0_1bA1C81laipX2oqUUvy_CjXQ-udWeFf6r-GH1J5byQ</recordid><startdate>20221025</startdate><enddate>20221025</enddate><creator>Fraser, A.E.</creator><creator>Cresswell, I.G.</creator><creator>Garaud, P.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0002-6266-8941</orcidid><orcidid>https://orcid.org/0000-0003-4323-2082</orcidid><orcidid>https://orcid.org/0000-0002-4538-7320</orcidid></search><sort><creationdate>20221025</creationdate><title>Non-ideal instabilities in sinusoidal shear flows with a streamwise magnetic field</title><author>Fraser, A.E. ; Cresswell, I.G. ; Garaud, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c302t-184bf454008fde3f526b41dce17b2810739b91c387939a3e0c82f0d1ad8af1e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Approximation</topic><topic>Eddy viscosity</topic><topic>Electrical resistivity</topic><topic>Field strength</topic><topic>Flow stability</topic><topic>Fluid flow</topic><topic>Incompressible flow</topic><topic>Instability</topic><topic>JFM Papers</topic><topic>Kelvin-helmholtz instability</topic><topic>Magnetic field</topic><topic>Magnetic fields</topic><topic>Magnetohydrodynamics</topic><topic>Prandtl number</topic><topic>Shear flow</topic><topic>Sine waves</topic><topic>Solitary waves</topic><topic>Solitons</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fraser, A.E.</creatorcontrib><creatorcontrib>Cresswell, I.G.</creatorcontrib><creatorcontrib>Garaud, P.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fraser, A.E.</au><au>Cresswell, I.G.</au><au>Garaud, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-ideal instabilities in sinusoidal shear flows with a streamwise magnetic field</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2022-10-25</date><risdate>2022</risdate><volume>949</volume><artnum>A43</artnum><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>We investigate the linear stability of a sinusoidal shear flow with an initially uniform streamwise magnetic field in the framework of incompressible magnetohydrodynamics (MHD) with finite resistivity and viscosity. This flow is known to be unstable to the Kelvin–Helmholtz instability in the hydrodynamic case. The same is true in ideal MHD, where dissipation is neglected, provided the magnetic field strength does not exceed a critical threshold beyond which magnetic tension stabilizes the flow. Here, we demonstrate that including viscosity and resistivity introduces two new modes of instability. One of these modes, which we refer to as an Alfvénic Dubrulle–Frisch instability, exists for any non-zero magnetic field strength as long as the magnetic Prandtl number ${{{Pm}}} &lt; 1$. We present a reduced model for this instability that reveals its excitation mechanism to be the negative eddy viscosity of periodic shear flows described by Dubrulle &amp; Frisch (Phys. Rev. A, vol. 43, 1991, pp. 5355–5364). Finally, we demonstrate numerically that this mode saturates in a quasi-stationary state dominated by counter-propagating solitons.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2022.782</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0002-6266-8941</orcidid><orcidid>https://orcid.org/0000-0003-4323-2082</orcidid><orcidid>https://orcid.org/0000-0002-4538-7320</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 2022-10, Vol.949, Article A43
issn 0022-1120
1469-7645
language eng
recordid cdi_proquest_journals_2721539779
source Cambridge University Press Journals Complete
subjects Approximation
Eddy viscosity
Electrical resistivity
Field strength
Flow stability
Fluid flow
Incompressible flow
Instability
JFM Papers
Kelvin-helmholtz instability
Magnetic field
Magnetic fields
Magnetohydrodynamics
Prandtl number
Shear flow
Sine waves
Solitary waves
Solitons
Viscosity
title Non-ideal instabilities in sinusoidal shear flows with a streamwise magnetic field
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T20%3A36%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-ideal%20instabilities%20in%20sinusoidal%20shear%20flows%20with%20a%20streamwise%20magnetic%20field&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Fraser,%20A.E.&rft.date=2022-10-25&rft.volume=949&rft.artnum=A43&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2022.782&rft_dat=%3Cproquest_cross%3E2721539779%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2721539779&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2022_782&rfr_iscdi=true