Unbounded Gradients in Federated Learning with Buffered Asynchronous Aggregation
Synchronous updates may compromise the efficiency of cross-device federated learning once the number of active clients increases. The \textit{FedBuff} algorithm (Nguyen et al., 2022) alleviates this problem by allowing asynchronous updates (staleness), which enhances the scalability of training whil...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-10 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Mohammad Taha Toghani Uribe, César A |
description | Synchronous updates may compromise the efficiency of cross-device federated learning once the number of active clients increases. The \textit{FedBuff} algorithm (Nguyen et al., 2022) alleviates this problem by allowing asynchronous updates (staleness), which enhances the scalability of training while preserving privacy via secure aggregation. We revisit the \textit{FedBuff} algorithm for asynchronous federated learning and extend the existing analysis by removing the boundedness assumptions from the gradient norm. This paper presents a theoretical analysis of the convergence rate of this algorithm when heterogeneity in data, batch size, and delay are considered. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2721476113</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2721476113</sourcerecordid><originalsourceid>FETCH-proquest_journals_27214761133</originalsourceid><addsrcrecordid>eNqNirsKwjAUQIMgWLT_EHAuNEkfrlWsDg4OOpdobtMUudE8EP_eDn6A04FzzowkXAiWbQrOFyT1fszznFc1L0uRkPMVbzaiAkUPTioDGDw1SFtQ4GSY9AmkQ4Oavk0Y6Db2PbhJN_6D98FZtNHTRmsHWgZjcUXmvXx4SH9cknW7v-yO2dPZVwQfutFGh1PqeM1ZUVeMCfHf9QV_6D88</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2721476113</pqid></control><display><type>article</type><title>Unbounded Gradients in Federated Learning with Buffered Asynchronous Aggregation</title><source>Free E- Journals</source><creator>Mohammad Taha Toghani ; Uribe, César A</creator><creatorcontrib>Mohammad Taha Toghani ; Uribe, César A</creatorcontrib><description>Synchronous updates may compromise the efficiency of cross-device federated learning once the number of active clients increases. The \textit{FedBuff} algorithm (Nguyen et al., 2022) alleviates this problem by allowing asynchronous updates (staleness), which enhances the scalability of training while preserving privacy via secure aggregation. We revisit the \textit{FedBuff} algorithm for asynchronous federated learning and extend the existing analysis by removing the boundedness assumptions from the gradient norm. This paper presents a theoretical analysis of the convergence rate of this algorithm when heterogeneity in data, batch size, and delay are considered.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Agglomeration ; Algorithms ; Heterogeneity ; Machine learning</subject><ispartof>arXiv.org, 2022-10</ispartof><rights>2022. This work is published under http://creativecommons.org/publicdomain/zero/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Mohammad Taha Toghani</creatorcontrib><creatorcontrib>Uribe, César A</creatorcontrib><title>Unbounded Gradients in Federated Learning with Buffered Asynchronous Aggregation</title><title>arXiv.org</title><description>Synchronous updates may compromise the efficiency of cross-device federated learning once the number of active clients increases. The \textit{FedBuff} algorithm (Nguyen et al., 2022) alleviates this problem by allowing asynchronous updates (staleness), which enhances the scalability of training while preserving privacy via secure aggregation. We revisit the \textit{FedBuff} algorithm for asynchronous federated learning and extend the existing analysis by removing the boundedness assumptions from the gradient norm. This paper presents a theoretical analysis of the convergence rate of this algorithm when heterogeneity in data, batch size, and delay are considered.</description><subject>Agglomeration</subject><subject>Algorithms</subject><subject>Heterogeneity</subject><subject>Machine learning</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNirsKwjAUQIMgWLT_EHAuNEkfrlWsDg4OOpdobtMUudE8EP_eDn6A04FzzowkXAiWbQrOFyT1fszznFc1L0uRkPMVbzaiAkUPTioDGDw1SFtQ4GSY9AmkQ4Oavk0Y6Db2PbhJN_6D98FZtNHTRmsHWgZjcUXmvXx4SH9cknW7v-yO2dPZVwQfutFGh1PqeM1ZUVeMCfHf9QV_6D88</recordid><startdate>20221003</startdate><enddate>20221003</enddate><creator>Mohammad Taha Toghani</creator><creator>Uribe, César A</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20221003</creationdate><title>Unbounded Gradients in Federated Learning with Buffered Asynchronous Aggregation</title><author>Mohammad Taha Toghani ; Uribe, César A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27214761133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Agglomeration</topic><topic>Algorithms</topic><topic>Heterogeneity</topic><topic>Machine learning</topic><toplevel>online_resources</toplevel><creatorcontrib>Mohammad Taha Toghani</creatorcontrib><creatorcontrib>Uribe, César A</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mohammad Taha Toghani</au><au>Uribe, César A</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Unbounded Gradients in Federated Learning with Buffered Asynchronous Aggregation</atitle><jtitle>arXiv.org</jtitle><date>2022-10-03</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>Synchronous updates may compromise the efficiency of cross-device federated learning once the number of active clients increases. The \textit{FedBuff} algorithm (Nguyen et al., 2022) alleviates this problem by allowing asynchronous updates (staleness), which enhances the scalability of training while preserving privacy via secure aggregation. We revisit the \textit{FedBuff} algorithm for asynchronous federated learning and extend the existing analysis by removing the boundedness assumptions from the gradient norm. This paper presents a theoretical analysis of the convergence rate of this algorithm when heterogeneity in data, batch size, and delay are considered.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-10 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2721476113 |
source | Free E- Journals |
subjects | Agglomeration Algorithms Heterogeneity Machine learning |
title | Unbounded Gradients in Federated Learning with Buffered Asynchronous Aggregation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T04%3A27%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Unbounded%20Gradients%20in%20Federated%20Learning%20with%20Buffered%20Asynchronous%20Aggregation&rft.jtitle=arXiv.org&rft.au=Mohammad%20Taha%20Toghani&rft.date=2022-10-03&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2721476113%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2721476113&rft_id=info:pmid/&rfr_iscdi=true |