Strong Linearly Polarized Emission from Monolayer WS2 Coupled with Plasmonic Nanocavity Array
As an indispensable component of optoelectronic system, an on‐chip light source with well‐defined polarization is desirable in optical communication, signal processing and display applications. The emerging atomically thin transition metal dichalcogenides (TMDCs), due to their high quantum yield and...
Gespeichert in:
Veröffentlicht in: | Advanced optical materials 2022-10, Vol.10 (19), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 19 |
container_start_page | |
container_title | Advanced optical materials |
container_volume | 10 |
creator | Huang, Xin Guo, Yang Du, Shuo Bai, Qinghu Sun, Chi Hu, Leyong Zheng, Ruixuan Fu, Peng Yang, Yang Jin, Aizi Watanabe, Kenji Taniguchi, Takashi Li, Junjie Liu, Baoli Gu, Changzhi |
description | As an indispensable component of optoelectronic system, an on‐chip light source with well‐defined polarization is desirable in optical communication, signal processing and display applications. The emerging atomically thin transition metal dichalcogenides (TMDCs), due to their high quantum yield and robust valley coherence, provide an unprecedented platform to realize the high‐efficient linearly polarized light emission. Although the valley‐related optical selection rules suggest that valley coherence should be possible, extreme conditions such as cryogenic temperatures are required, which is a long‐term challenge for their practical applications. In this paper, the strongly enhanced linearly polarized emission is realized by integrating WS2 monolayers with a delicate designed plasmonic nanocavity. It is demonstrated that strong plasmon–exciton coupling gives rise to the plasmon–exciton polariton. The polariton valley coherence results in a linear polarization up to 0.32 at room temperature and contributes to 52% of the total linear polarization. Enhancement of linear polarization through polariton valley coherence can be understood as the consequence of the extra relaxation channel introduced by its plasmonic counterpart. The potential of 2D TMDC‐plasmon hybrid structure appears to be high and of significant technological interest, as well as inspires new perspectives on quantum manipulations in 2D solid‐state systems.
A strong linearly polarized emission is realized in a plasmon–exciton hybrid system; consisting of a 2D van der Waals heterostructure and a tunable plasmonic nanocavity. It provides a well‐defined platform to create the valley coherent light to give desired linear polarization state in luminescence and brings about significant advancement in room‐temperature valleytronic applications in the integrated optoelectronic technologies. |
doi_str_mv | 10.1002/adom.202200535 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2721460267</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2721460267</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2335-5425659018907f4faf6487e00d0da5527b64be26b8f8516d8396c8a0f16075a13</originalsourceid><addsrcrecordid>eNpNkF1LwzAUhoMoOOZuvQ543XmSNEl7Oeb8gM0NpnglIVtTzWibmrSO-uvtmAyvznl5H86BB6FrAmMCQG915soxBUoBOONnaEBJyiMCkpz_2y_RKIQdAPSBpbEcoPd14131gee2MtoXHV65Qnv7YzI8K20I1lU4967EC1f1TWc8fltTPHVtXfTM3jafeFXoULrKbvGzrtxWf9umwxPvdXeFLnJdBDP6m0P0ej97mT5G8-XD03Qyj2rKGI94TLngKZAkBZnHuc5FnEgDkEGmOadyI-KNoWKT5AknIktYKraJhpwIkFwTNkQ3x7u1d1-tCY3audZX_UtFJSWxACpkT6VHam8L06na21L7ThFQB4XqoFCdFKrJ3XJxSuwXHxlmLA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2721460267</pqid></control><display><type>article</type><title>Strong Linearly Polarized Emission from Monolayer WS2 Coupled with Plasmonic Nanocavity Array</title><source>Wiley Journals</source><creator>Huang, Xin ; Guo, Yang ; Du, Shuo ; Bai, Qinghu ; Sun, Chi ; Hu, Leyong ; Zheng, Ruixuan ; Fu, Peng ; Yang, Yang ; Jin, Aizi ; Watanabe, Kenji ; Taniguchi, Takashi ; Li, Junjie ; Liu, Baoli ; Gu, Changzhi</creator><creatorcontrib>Huang, Xin ; Guo, Yang ; Du, Shuo ; Bai, Qinghu ; Sun, Chi ; Hu, Leyong ; Zheng, Ruixuan ; Fu, Peng ; Yang, Yang ; Jin, Aizi ; Watanabe, Kenji ; Taniguchi, Takashi ; Li, Junjie ; Liu, Baoli ; Gu, Changzhi</creatorcontrib><description>As an indispensable component of optoelectronic system, an on‐chip light source with well‐defined polarization is desirable in optical communication, signal processing and display applications. The emerging atomically thin transition metal dichalcogenides (TMDCs), due to their high quantum yield and robust valley coherence, provide an unprecedented platform to realize the high‐efficient linearly polarized light emission. Although the valley‐related optical selection rules suggest that valley coherence should be possible, extreme conditions such as cryogenic temperatures are required, which is a long‐term challenge for their practical applications. In this paper, the strongly enhanced linearly polarized emission is realized by integrating WS2 monolayers with a delicate designed plasmonic nanocavity. It is demonstrated that strong plasmon–exciton coupling gives rise to the plasmon–exciton polariton. The polariton valley coherence results in a linear polarization up to 0.32 at room temperature and contributes to 52% of the total linear polarization. Enhancement of linear polarization through polariton valley coherence can be understood as the consequence of the extra relaxation channel introduced by its plasmonic counterpart. The potential of 2D TMDC‐plasmon hybrid structure appears to be high and of significant technological interest, as well as inspires new perspectives on quantum manipulations in 2D solid‐state systems.
A strong linearly polarized emission is realized in a plasmon–exciton hybrid system; consisting of a 2D van der Waals heterostructure and a tunable plasmonic nanocavity. It provides a well‐defined platform to create the valley coherent light to give desired linear polarization state in luminescence and brings about significant advancement in room‐temperature valleytronic applications in the integrated optoelectronic technologies.</description><identifier>ISSN: 2195-1071</identifier><identifier>EISSN: 2195-1071</identifier><identifier>DOI: 10.1002/adom.202200535</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Coherence ; Cryogenic temperature ; Excitons ; Hybrid structures ; Light emission ; Light sources ; Linear polarization ; Materials science ; Monolayers ; Optical communication ; Optics ; Optoelectronics ; plasmonic nanocavities ; Plasmonics ; plasmon‐exciton polaritons ; Polaritons ; Polarized light ; Room temperature ; Signal processing ; Transition metal compounds ; Tungsten disulfide ; valley coherence ; Valleys</subject><ispartof>Advanced optical materials, 2022-10, Vol.10 (19), p.n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-6132-5306</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadom.202200535$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadom.202200535$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Huang, Xin</creatorcontrib><creatorcontrib>Guo, Yang</creatorcontrib><creatorcontrib>Du, Shuo</creatorcontrib><creatorcontrib>Bai, Qinghu</creatorcontrib><creatorcontrib>Sun, Chi</creatorcontrib><creatorcontrib>Hu, Leyong</creatorcontrib><creatorcontrib>Zheng, Ruixuan</creatorcontrib><creatorcontrib>Fu, Peng</creatorcontrib><creatorcontrib>Yang, Yang</creatorcontrib><creatorcontrib>Jin, Aizi</creatorcontrib><creatorcontrib>Watanabe, Kenji</creatorcontrib><creatorcontrib>Taniguchi, Takashi</creatorcontrib><creatorcontrib>Li, Junjie</creatorcontrib><creatorcontrib>Liu, Baoli</creatorcontrib><creatorcontrib>Gu, Changzhi</creatorcontrib><title>Strong Linearly Polarized Emission from Monolayer WS2 Coupled with Plasmonic Nanocavity Array</title><title>Advanced optical materials</title><description>As an indispensable component of optoelectronic system, an on‐chip light source with well‐defined polarization is desirable in optical communication, signal processing and display applications. The emerging atomically thin transition metal dichalcogenides (TMDCs), due to their high quantum yield and robust valley coherence, provide an unprecedented platform to realize the high‐efficient linearly polarized light emission. Although the valley‐related optical selection rules suggest that valley coherence should be possible, extreme conditions such as cryogenic temperatures are required, which is a long‐term challenge for their practical applications. In this paper, the strongly enhanced linearly polarized emission is realized by integrating WS2 monolayers with a delicate designed plasmonic nanocavity. It is demonstrated that strong plasmon–exciton coupling gives rise to the plasmon–exciton polariton. The polariton valley coherence results in a linear polarization up to 0.32 at room temperature and contributes to 52% of the total linear polarization. Enhancement of linear polarization through polariton valley coherence can be understood as the consequence of the extra relaxation channel introduced by its plasmonic counterpart. The potential of 2D TMDC‐plasmon hybrid structure appears to be high and of significant technological interest, as well as inspires new perspectives on quantum manipulations in 2D solid‐state systems.
A strong linearly polarized emission is realized in a plasmon–exciton hybrid system; consisting of a 2D van der Waals heterostructure and a tunable plasmonic nanocavity. It provides a well‐defined platform to create the valley coherent light to give desired linear polarization state in luminescence and brings about significant advancement in room‐temperature valleytronic applications in the integrated optoelectronic technologies.</description><subject>Coherence</subject><subject>Cryogenic temperature</subject><subject>Excitons</subject><subject>Hybrid structures</subject><subject>Light emission</subject><subject>Light sources</subject><subject>Linear polarization</subject><subject>Materials science</subject><subject>Monolayers</subject><subject>Optical communication</subject><subject>Optics</subject><subject>Optoelectronics</subject><subject>plasmonic nanocavities</subject><subject>Plasmonics</subject><subject>plasmon‐exciton polaritons</subject><subject>Polaritons</subject><subject>Polarized light</subject><subject>Room temperature</subject><subject>Signal processing</subject><subject>Transition metal compounds</subject><subject>Tungsten disulfide</subject><subject>valley coherence</subject><subject>Valleys</subject><issn>2195-1071</issn><issn>2195-1071</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpNkF1LwzAUhoMoOOZuvQ543XmSNEl7Oeb8gM0NpnglIVtTzWibmrSO-uvtmAyvznl5H86BB6FrAmMCQG915soxBUoBOONnaEBJyiMCkpz_2y_RKIQdAPSBpbEcoPd14131gee2MtoXHV65Qnv7YzI8K20I1lU4967EC1f1TWc8fltTPHVtXfTM3jafeFXoULrKbvGzrtxWf9umwxPvdXeFLnJdBDP6m0P0ej97mT5G8-XD03Qyj2rKGI94TLngKZAkBZnHuc5FnEgDkEGmOadyI-KNoWKT5AknIktYKraJhpwIkFwTNkQ3x7u1d1-tCY3audZX_UtFJSWxACpkT6VHam8L06na21L7ThFQB4XqoFCdFKrJ3XJxSuwXHxlmLA</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Huang, Xin</creator><creator>Guo, Yang</creator><creator>Du, Shuo</creator><creator>Bai, Qinghu</creator><creator>Sun, Chi</creator><creator>Hu, Leyong</creator><creator>Zheng, Ruixuan</creator><creator>Fu, Peng</creator><creator>Yang, Yang</creator><creator>Jin, Aizi</creator><creator>Watanabe, Kenji</creator><creator>Taniguchi, Takashi</creator><creator>Li, Junjie</creator><creator>Liu, Baoli</creator><creator>Gu, Changzhi</creator><general>Wiley Subscription Services, Inc</general><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6132-5306</orcidid></search><sort><creationdate>20221001</creationdate><title>Strong Linearly Polarized Emission from Monolayer WS2 Coupled with Plasmonic Nanocavity Array</title><author>Huang, Xin ; Guo, Yang ; Du, Shuo ; Bai, Qinghu ; Sun, Chi ; Hu, Leyong ; Zheng, Ruixuan ; Fu, Peng ; Yang, Yang ; Jin, Aizi ; Watanabe, Kenji ; Taniguchi, Takashi ; Li, Junjie ; Liu, Baoli ; Gu, Changzhi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2335-5425659018907f4faf6487e00d0da5527b64be26b8f8516d8396c8a0f16075a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Coherence</topic><topic>Cryogenic temperature</topic><topic>Excitons</topic><topic>Hybrid structures</topic><topic>Light emission</topic><topic>Light sources</topic><topic>Linear polarization</topic><topic>Materials science</topic><topic>Monolayers</topic><topic>Optical communication</topic><topic>Optics</topic><topic>Optoelectronics</topic><topic>plasmonic nanocavities</topic><topic>Plasmonics</topic><topic>plasmon‐exciton polaritons</topic><topic>Polaritons</topic><topic>Polarized light</topic><topic>Room temperature</topic><topic>Signal processing</topic><topic>Transition metal compounds</topic><topic>Tungsten disulfide</topic><topic>valley coherence</topic><topic>Valleys</topic><toplevel>online_resources</toplevel><creatorcontrib>Huang, Xin</creatorcontrib><creatorcontrib>Guo, Yang</creatorcontrib><creatorcontrib>Du, Shuo</creatorcontrib><creatorcontrib>Bai, Qinghu</creatorcontrib><creatorcontrib>Sun, Chi</creatorcontrib><creatorcontrib>Hu, Leyong</creatorcontrib><creatorcontrib>Zheng, Ruixuan</creatorcontrib><creatorcontrib>Fu, Peng</creatorcontrib><creatorcontrib>Yang, Yang</creatorcontrib><creatorcontrib>Jin, Aizi</creatorcontrib><creatorcontrib>Watanabe, Kenji</creatorcontrib><creatorcontrib>Taniguchi, Takashi</creatorcontrib><creatorcontrib>Li, Junjie</creatorcontrib><creatorcontrib>Liu, Baoli</creatorcontrib><creatorcontrib>Gu, Changzhi</creatorcontrib><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced optical materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Xin</au><au>Guo, Yang</au><au>Du, Shuo</au><au>Bai, Qinghu</au><au>Sun, Chi</au><au>Hu, Leyong</au><au>Zheng, Ruixuan</au><au>Fu, Peng</au><au>Yang, Yang</au><au>Jin, Aizi</au><au>Watanabe, Kenji</au><au>Taniguchi, Takashi</au><au>Li, Junjie</au><au>Liu, Baoli</au><au>Gu, Changzhi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strong Linearly Polarized Emission from Monolayer WS2 Coupled with Plasmonic Nanocavity Array</atitle><jtitle>Advanced optical materials</jtitle><date>2022-10-01</date><risdate>2022</risdate><volume>10</volume><issue>19</issue><epage>n/a</epage><issn>2195-1071</issn><eissn>2195-1071</eissn><abstract>As an indispensable component of optoelectronic system, an on‐chip light source with well‐defined polarization is desirable in optical communication, signal processing and display applications. The emerging atomically thin transition metal dichalcogenides (TMDCs), due to their high quantum yield and robust valley coherence, provide an unprecedented platform to realize the high‐efficient linearly polarized light emission. Although the valley‐related optical selection rules suggest that valley coherence should be possible, extreme conditions such as cryogenic temperatures are required, which is a long‐term challenge for their practical applications. In this paper, the strongly enhanced linearly polarized emission is realized by integrating WS2 monolayers with a delicate designed plasmonic nanocavity. It is demonstrated that strong plasmon–exciton coupling gives rise to the plasmon–exciton polariton. The polariton valley coherence results in a linear polarization up to 0.32 at room temperature and contributes to 52% of the total linear polarization. Enhancement of linear polarization through polariton valley coherence can be understood as the consequence of the extra relaxation channel introduced by its plasmonic counterpart. The potential of 2D TMDC‐plasmon hybrid structure appears to be high and of significant technological interest, as well as inspires new perspectives on quantum manipulations in 2D solid‐state systems.
A strong linearly polarized emission is realized in a plasmon–exciton hybrid system; consisting of a 2D van der Waals heterostructure and a tunable plasmonic nanocavity. It provides a well‐defined platform to create the valley coherent light to give desired linear polarization state in luminescence and brings about significant advancement in room‐temperature valleytronic applications in the integrated optoelectronic technologies.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adom.202200535</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-6132-5306</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2195-1071 |
ispartof | Advanced optical materials, 2022-10, Vol.10 (19), p.n/a |
issn | 2195-1071 2195-1071 |
language | eng |
recordid | cdi_proquest_journals_2721460267 |
source | Wiley Journals |
subjects | Coherence Cryogenic temperature Excitons Hybrid structures Light emission Light sources Linear polarization Materials science Monolayers Optical communication Optics Optoelectronics plasmonic nanocavities Plasmonics plasmon‐exciton polaritons Polaritons Polarized light Room temperature Signal processing Transition metal compounds Tungsten disulfide valley coherence Valleys |
title | Strong Linearly Polarized Emission from Monolayer WS2 Coupled with Plasmonic Nanocavity Array |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T12%3A22%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strong%20Linearly%20Polarized%20Emission%20from%20Monolayer%20WS2%20Coupled%20with%20Plasmonic%20Nanocavity%20Array&rft.jtitle=Advanced%20optical%20materials&rft.au=Huang,%20Xin&rft.date=2022-10-01&rft.volume=10&rft.issue=19&rft.epage=n/a&rft.issn=2195-1071&rft.eissn=2195-1071&rft_id=info:doi/10.1002/adom.202200535&rft_dat=%3Cproquest_wiley%3E2721460267%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2721460267&rft_id=info:pmid/&rfr_iscdi=true |