The Geometry of Optimal Gaits for Inertia-Dominated Kinematic Systems

Isolated mechanical systems-e.g., those floating in space, in free-fall, or on a frictionless surface-are able to achieve net rotation by cyclically changing their shape, even if they have no net angular momentum. Similarly, swimmers immersed in "perfect fluids" are able to use cyclic shap...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on robotics 2022-10, Vol.38 (5), p.3279-3299
Hauptverfasser: Hatton, Ross L., Brock, Zachary, Chen, Shuoqi, Choset, Howie, Faraji, Hossein, Fu, Ruijie, Justus, Nathan, Ramasamy, Suresh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3299
container_issue 5
container_start_page 3279
container_title IEEE transactions on robotics
container_volume 38
creator Hatton, Ross L.
Brock, Zachary
Chen, Shuoqi
Choset, Howie
Faraji, Hossein
Fu, Ruijie
Justus, Nathan
Ramasamy, Suresh
description Isolated mechanical systems-e.g., those floating in space, in free-fall, or on a frictionless surface-are able to achieve net rotation by cyclically changing their shape, even if they have no net angular momentum. Similarly, swimmers immersed in "perfect fluids" are able to use cyclic shape changes to both translate and rotate even if the swimmer-fluid system has no net linear or angular momentum. Finally, systems fully constrained by direct nonholonomic constraints (e.g., passive wheels) can push against these constraints to move through the world. Previous work has demonstrated that the displacement induced by these shape changes corresponds to the amount of constraint curvature that the gaits enclose. Properly assessing or optimizing the utility of a gait also requires considering the time or resources required to execute it: A gait that produces a small displacement per cycle, but that can be executed in a short time, may produce a faster average velocity than a gait that produces more displacement, but takes longer to complete a cycle at the same instantaneous effort. In this paper, we consider gaits under two instantaneous measures of effort. For each of these costs, we demonstrate that fixing the average instantaneous cost to a unit value allows us to transform the effort costs into time-to-execute costs for any given gait cycle. We then illustrate how the interaction between the constraint curvature and these costs leads to characteristic geometries for optimal cycles, in which the gait trajectories resemble elastic hoops distended from within by internal pressures.
doi_str_mv 10.1109/TRO.2022.3164595
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2721433743</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9774857</ieee_id><sourcerecordid>2721433743</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-8adfe5c0be9485e17757fb9c7418c1079a1eb18703ef8473c3343c46c1d8e3833</originalsourceid><addsrcrecordid>eNo9kE1PAjEQhhujiYjeTbw08bzY7nRpezSKSCQhUTw3pUxjCbuLbTnw7y2BeJo5PO98PITcczbinOmn5ediVLO6HgEfi0Y3F2TAteAVE2N1WfqmqStgWl2Tm5Q2jNVCMxiQyfIH6RT7FnM80N7TxS6H1m7p1IacqO8jnXUYc7DVa9-GzmZc04_QYWtzcPTrkDK26ZZcebtNeHeuQ_L9Nlm-vFfzxXT28jyvHADkStm1x8axFWqhGuRSNtKvtJOCK8eZ1JbjiivJAL0SEkpKgBNjx9cKQQEMyeNp7i72v3tM2Wz6fezKSlPLmgsAKY4UO1Eu9ilF9GYXy0_xYDgzR1mmyDJHWeYsq0QeTpGAiP-4lrLcKeEPjxJkOg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2721433743</pqid></control><display><type>article</type><title>The Geometry of Optimal Gaits for Inertia-Dominated Kinematic Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Hatton, Ross L. ; Brock, Zachary ; Chen, Shuoqi ; Choset, Howie ; Faraji, Hossein ; Fu, Ruijie ; Justus, Nathan ; Ramasamy, Suresh</creator><creatorcontrib>Hatton, Ross L. ; Brock, Zachary ; Chen, Shuoqi ; Choset, Howie ; Faraji, Hossein ; Fu, Ruijie ; Justus, Nathan ; Ramasamy, Suresh</creatorcontrib><description>Isolated mechanical systems-e.g., those floating in space, in free-fall, or on a frictionless surface-are able to achieve net rotation by cyclically changing their shape, even if they have no net angular momentum. Similarly, swimmers immersed in "perfect fluids" are able to use cyclic shape changes to both translate and rotate even if the swimmer-fluid system has no net linear or angular momentum. Finally, systems fully constrained by direct nonholonomic constraints (e.g., passive wheels) can push against these constraints to move through the world. Previous work has demonstrated that the displacement induced by these shape changes corresponds to the amount of constraint curvature that the gaits enclose. Properly assessing or optimizing the utility of a gait also requires considering the time or resources required to execute it: A gait that produces a small displacement per cycle, but that can be executed in a short time, may produce a faster average velocity than a gait that produces more displacement, but takes longer to complete a cycle at the same instantaneous effort. In this paper, we consider gaits under two instantaneous measures of effort. For each of these costs, we demonstrate that fixing the average instantaneous cost to a unit value allows us to transform the effort costs into time-to-execute costs for any given gait cycle. We then illustrate how the interaction between the constraint curvature and these costs leads to characteristic geometries for optimal cycles, in which the gait trajectories resemble elastic hoops distended from within by internal pressures.</description><identifier>ISSN: 1552-3098</identifier><identifier>EISSN: 1941-0468</identifier><identifier>DOI: 10.1109/TRO.2022.3164595</identifier><identifier>CODEN: ITREAE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Angular momentum ; Constraints ; Cost function ; Costs ; Curvature ; Displacement ; Dynamics ; Gait ; Geometric mechanics ; Internal pressure ; Jacobian matrices ; Kinematics ; Kinetic energy ; lie brackets ; locomotion ; Mechanical systems ; Optimization ; Shape ; Swimming ; Trajectory</subject><ispartof>IEEE transactions on robotics, 2022-10, Vol.38 (5), p.3279-3299</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-8adfe5c0be9485e17757fb9c7418c1079a1eb18703ef8473c3343c46c1d8e3833</citedby><cites>FETCH-LOGICAL-c333t-8adfe5c0be9485e17757fb9c7418c1079a1eb18703ef8473c3343c46c1d8e3833</cites><orcidid>0000-0003-1077-3560 ; 0000-0002-0422-0209 ; 0000-0003-3570-9290 ; 0000-0002-1667-9797 ; 0000-0002-5434-7945 ; 0000-0001-8128-6829</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9774857$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9774857$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hatton, Ross L.</creatorcontrib><creatorcontrib>Brock, Zachary</creatorcontrib><creatorcontrib>Chen, Shuoqi</creatorcontrib><creatorcontrib>Choset, Howie</creatorcontrib><creatorcontrib>Faraji, Hossein</creatorcontrib><creatorcontrib>Fu, Ruijie</creatorcontrib><creatorcontrib>Justus, Nathan</creatorcontrib><creatorcontrib>Ramasamy, Suresh</creatorcontrib><title>The Geometry of Optimal Gaits for Inertia-Dominated Kinematic Systems</title><title>IEEE transactions on robotics</title><addtitle>TRO</addtitle><description>Isolated mechanical systems-e.g., those floating in space, in free-fall, or on a frictionless surface-are able to achieve net rotation by cyclically changing their shape, even if they have no net angular momentum. Similarly, swimmers immersed in "perfect fluids" are able to use cyclic shape changes to both translate and rotate even if the swimmer-fluid system has no net linear or angular momentum. Finally, systems fully constrained by direct nonholonomic constraints (e.g., passive wheels) can push against these constraints to move through the world. Previous work has demonstrated that the displacement induced by these shape changes corresponds to the amount of constraint curvature that the gaits enclose. Properly assessing or optimizing the utility of a gait also requires considering the time or resources required to execute it: A gait that produces a small displacement per cycle, but that can be executed in a short time, may produce a faster average velocity than a gait that produces more displacement, but takes longer to complete a cycle at the same instantaneous effort. In this paper, we consider gaits under two instantaneous measures of effort. For each of these costs, we demonstrate that fixing the average instantaneous cost to a unit value allows us to transform the effort costs into time-to-execute costs for any given gait cycle. We then illustrate how the interaction between the constraint curvature and these costs leads to characteristic geometries for optimal cycles, in which the gait trajectories resemble elastic hoops distended from within by internal pressures.</description><subject>Angular momentum</subject><subject>Constraints</subject><subject>Cost function</subject><subject>Costs</subject><subject>Curvature</subject><subject>Displacement</subject><subject>Dynamics</subject><subject>Gait</subject><subject>Geometric mechanics</subject><subject>Internal pressure</subject><subject>Jacobian matrices</subject><subject>Kinematics</subject><subject>Kinetic energy</subject><subject>lie brackets</subject><subject>locomotion</subject><subject>Mechanical systems</subject><subject>Optimization</subject><subject>Shape</subject><subject>Swimming</subject><subject>Trajectory</subject><issn>1552-3098</issn><issn>1941-0468</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1PAjEQhhujiYjeTbw08bzY7nRpezSKSCQhUTw3pUxjCbuLbTnw7y2BeJo5PO98PITcczbinOmn5ediVLO6HgEfi0Y3F2TAteAVE2N1WfqmqStgWl2Tm5Q2jNVCMxiQyfIH6RT7FnM80N7TxS6H1m7p1IacqO8jnXUYc7DVa9-GzmZc04_QYWtzcPTrkDK26ZZcebtNeHeuQ_L9Nlm-vFfzxXT28jyvHADkStm1x8axFWqhGuRSNtKvtJOCK8eZ1JbjiivJAL0SEkpKgBNjx9cKQQEMyeNp7i72v3tM2Wz6fezKSlPLmgsAKY4UO1Eu9ilF9GYXy0_xYDgzR1mmyDJHWeYsq0QeTpGAiP-4lrLcKeEPjxJkOg</recordid><startdate>202210</startdate><enddate>202210</enddate><creator>Hatton, Ross L.</creator><creator>Brock, Zachary</creator><creator>Chen, Shuoqi</creator><creator>Choset, Howie</creator><creator>Faraji, Hossein</creator><creator>Fu, Ruijie</creator><creator>Justus, Nathan</creator><creator>Ramasamy, Suresh</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1077-3560</orcidid><orcidid>https://orcid.org/0000-0002-0422-0209</orcidid><orcidid>https://orcid.org/0000-0003-3570-9290</orcidid><orcidid>https://orcid.org/0000-0002-1667-9797</orcidid><orcidid>https://orcid.org/0000-0002-5434-7945</orcidid><orcidid>https://orcid.org/0000-0001-8128-6829</orcidid></search><sort><creationdate>202210</creationdate><title>The Geometry of Optimal Gaits for Inertia-Dominated Kinematic Systems</title><author>Hatton, Ross L. ; Brock, Zachary ; Chen, Shuoqi ; Choset, Howie ; Faraji, Hossein ; Fu, Ruijie ; Justus, Nathan ; Ramasamy, Suresh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-8adfe5c0be9485e17757fb9c7418c1079a1eb18703ef8473c3343c46c1d8e3833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Angular momentum</topic><topic>Constraints</topic><topic>Cost function</topic><topic>Costs</topic><topic>Curvature</topic><topic>Displacement</topic><topic>Dynamics</topic><topic>Gait</topic><topic>Geometric mechanics</topic><topic>Internal pressure</topic><topic>Jacobian matrices</topic><topic>Kinematics</topic><topic>Kinetic energy</topic><topic>lie brackets</topic><topic>locomotion</topic><topic>Mechanical systems</topic><topic>Optimization</topic><topic>Shape</topic><topic>Swimming</topic><topic>Trajectory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hatton, Ross L.</creatorcontrib><creatorcontrib>Brock, Zachary</creatorcontrib><creatorcontrib>Chen, Shuoqi</creatorcontrib><creatorcontrib>Choset, Howie</creatorcontrib><creatorcontrib>Faraji, Hossein</creatorcontrib><creatorcontrib>Fu, Ruijie</creatorcontrib><creatorcontrib>Justus, Nathan</creatorcontrib><creatorcontrib>Ramasamy, Suresh</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on robotics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hatton, Ross L.</au><au>Brock, Zachary</au><au>Chen, Shuoqi</au><au>Choset, Howie</au><au>Faraji, Hossein</au><au>Fu, Ruijie</au><au>Justus, Nathan</au><au>Ramasamy, Suresh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Geometry of Optimal Gaits for Inertia-Dominated Kinematic Systems</atitle><jtitle>IEEE transactions on robotics</jtitle><stitle>TRO</stitle><date>2022-10</date><risdate>2022</risdate><volume>38</volume><issue>5</issue><spage>3279</spage><epage>3299</epage><pages>3279-3299</pages><issn>1552-3098</issn><eissn>1941-0468</eissn><coden>ITREAE</coden><abstract>Isolated mechanical systems-e.g., those floating in space, in free-fall, or on a frictionless surface-are able to achieve net rotation by cyclically changing their shape, even if they have no net angular momentum. Similarly, swimmers immersed in "perfect fluids" are able to use cyclic shape changes to both translate and rotate even if the swimmer-fluid system has no net linear or angular momentum. Finally, systems fully constrained by direct nonholonomic constraints (e.g., passive wheels) can push against these constraints to move through the world. Previous work has demonstrated that the displacement induced by these shape changes corresponds to the amount of constraint curvature that the gaits enclose. Properly assessing or optimizing the utility of a gait also requires considering the time or resources required to execute it: A gait that produces a small displacement per cycle, but that can be executed in a short time, may produce a faster average velocity than a gait that produces more displacement, but takes longer to complete a cycle at the same instantaneous effort. In this paper, we consider gaits under two instantaneous measures of effort. For each of these costs, we demonstrate that fixing the average instantaneous cost to a unit value allows us to transform the effort costs into time-to-execute costs for any given gait cycle. We then illustrate how the interaction between the constraint curvature and these costs leads to characteristic geometries for optimal cycles, in which the gait trajectories resemble elastic hoops distended from within by internal pressures.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TRO.2022.3164595</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0003-1077-3560</orcidid><orcidid>https://orcid.org/0000-0002-0422-0209</orcidid><orcidid>https://orcid.org/0000-0003-3570-9290</orcidid><orcidid>https://orcid.org/0000-0002-1667-9797</orcidid><orcidid>https://orcid.org/0000-0002-5434-7945</orcidid><orcidid>https://orcid.org/0000-0001-8128-6829</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1552-3098
ispartof IEEE transactions on robotics, 2022-10, Vol.38 (5), p.3279-3299
issn 1552-3098
1941-0468
language eng
recordid cdi_proquest_journals_2721433743
source IEEE Electronic Library (IEL)
subjects Angular momentum
Constraints
Cost function
Costs
Curvature
Displacement
Dynamics
Gait
Geometric mechanics
Internal pressure
Jacobian matrices
Kinematics
Kinetic energy
lie brackets
locomotion
Mechanical systems
Optimization
Shape
Swimming
Trajectory
title The Geometry of Optimal Gaits for Inertia-Dominated Kinematic Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T01%3A12%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Geometry%20of%20Optimal%20Gaits%20for%20Inertia-Dominated%20Kinematic%20Systems&rft.jtitle=IEEE%20transactions%20on%20robotics&rft.au=Hatton,%20Ross%20L.&rft.date=2022-10&rft.volume=38&rft.issue=5&rft.spage=3279&rft.epage=3299&rft.pages=3279-3299&rft.issn=1552-3098&rft.eissn=1941-0468&rft.coden=ITREAE&rft_id=info:doi/10.1109/TRO.2022.3164595&rft_dat=%3Cproquest_RIE%3E2721433743%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2721433743&rft_id=info:pmid/&rft_ieee_id=9774857&rfr_iscdi=true