The Geometry of Optimal Gaits for Inertia-Dominated Kinematic Systems
Isolated mechanical systems-e.g., those floating in space, in free-fall, or on a frictionless surface-are able to achieve net rotation by cyclically changing their shape, even if they have no net angular momentum. Similarly, swimmers immersed in "perfect fluids" are able to use cyclic shap...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on robotics 2022-10, Vol.38 (5), p.3279-3299 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3299 |
---|---|
container_issue | 5 |
container_start_page | 3279 |
container_title | IEEE transactions on robotics |
container_volume | 38 |
creator | Hatton, Ross L. Brock, Zachary Chen, Shuoqi Choset, Howie Faraji, Hossein Fu, Ruijie Justus, Nathan Ramasamy, Suresh |
description | Isolated mechanical systems-e.g., those floating in space, in free-fall, or on a frictionless surface-are able to achieve net rotation by cyclically changing their shape, even if they have no net angular momentum. Similarly, swimmers immersed in "perfect fluids" are able to use cyclic shape changes to both translate and rotate even if the swimmer-fluid system has no net linear or angular momentum. Finally, systems fully constrained by direct nonholonomic constraints (e.g., passive wheels) can push against these constraints to move through the world. Previous work has demonstrated that the displacement induced by these shape changes corresponds to the amount of constraint curvature that the gaits enclose. Properly assessing or optimizing the utility of a gait also requires considering the time or resources required to execute it: A gait that produces a small displacement per cycle, but that can be executed in a short time, may produce a faster average velocity than a gait that produces more displacement, but takes longer to complete a cycle at the same instantaneous effort. In this paper, we consider gaits under two instantaneous measures of effort. For each of these costs, we demonstrate that fixing the average instantaneous cost to a unit value allows us to transform the effort costs into time-to-execute costs for any given gait cycle. We then illustrate how the interaction between the constraint curvature and these costs leads to characteristic geometries for optimal cycles, in which the gait trajectories resemble elastic hoops distended from within by internal pressures. |
doi_str_mv | 10.1109/TRO.2022.3164595 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2721433743</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9774857</ieee_id><sourcerecordid>2721433743</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-8adfe5c0be9485e17757fb9c7418c1079a1eb18703ef8473c3343c46c1d8e3833</originalsourceid><addsrcrecordid>eNo9kE1PAjEQhhujiYjeTbw08bzY7nRpezSKSCQhUTw3pUxjCbuLbTnw7y2BeJo5PO98PITcczbinOmn5ediVLO6HgEfi0Y3F2TAteAVE2N1WfqmqStgWl2Tm5Q2jNVCMxiQyfIH6RT7FnM80N7TxS6H1m7p1IacqO8jnXUYc7DVa9-GzmZc04_QYWtzcPTrkDK26ZZcebtNeHeuQ_L9Nlm-vFfzxXT28jyvHADkStm1x8axFWqhGuRSNtKvtJOCK8eZ1JbjiivJAL0SEkpKgBNjx9cKQQEMyeNp7i72v3tM2Wz6fezKSlPLmgsAKY4UO1Eu9ilF9GYXy0_xYDgzR1mmyDJHWeYsq0QeTpGAiP-4lrLcKeEPjxJkOg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2721433743</pqid></control><display><type>article</type><title>The Geometry of Optimal Gaits for Inertia-Dominated Kinematic Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Hatton, Ross L. ; Brock, Zachary ; Chen, Shuoqi ; Choset, Howie ; Faraji, Hossein ; Fu, Ruijie ; Justus, Nathan ; Ramasamy, Suresh</creator><creatorcontrib>Hatton, Ross L. ; Brock, Zachary ; Chen, Shuoqi ; Choset, Howie ; Faraji, Hossein ; Fu, Ruijie ; Justus, Nathan ; Ramasamy, Suresh</creatorcontrib><description>Isolated mechanical systems-e.g., those floating in space, in free-fall, or on a frictionless surface-are able to achieve net rotation by cyclically changing their shape, even if they have no net angular momentum. Similarly, swimmers immersed in "perfect fluids" are able to use cyclic shape changes to both translate and rotate even if the swimmer-fluid system has no net linear or angular momentum. Finally, systems fully constrained by direct nonholonomic constraints (e.g., passive wheels) can push against these constraints to move through the world. Previous work has demonstrated that the displacement induced by these shape changes corresponds to the amount of constraint curvature that the gaits enclose. Properly assessing or optimizing the utility of a gait also requires considering the time or resources required to execute it: A gait that produces a small displacement per cycle, but that can be executed in a short time, may produce a faster average velocity than a gait that produces more displacement, but takes longer to complete a cycle at the same instantaneous effort. In this paper, we consider gaits under two instantaneous measures of effort. For each of these costs, we demonstrate that fixing the average instantaneous cost to a unit value allows us to transform the effort costs into time-to-execute costs for any given gait cycle. We then illustrate how the interaction between the constraint curvature and these costs leads to characteristic geometries for optimal cycles, in which the gait trajectories resemble elastic hoops distended from within by internal pressures.</description><identifier>ISSN: 1552-3098</identifier><identifier>EISSN: 1941-0468</identifier><identifier>DOI: 10.1109/TRO.2022.3164595</identifier><identifier>CODEN: ITREAE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Angular momentum ; Constraints ; Cost function ; Costs ; Curvature ; Displacement ; Dynamics ; Gait ; Geometric mechanics ; Internal pressure ; Jacobian matrices ; Kinematics ; Kinetic energy ; lie brackets ; locomotion ; Mechanical systems ; Optimization ; Shape ; Swimming ; Trajectory</subject><ispartof>IEEE transactions on robotics, 2022-10, Vol.38 (5), p.3279-3299</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-8adfe5c0be9485e17757fb9c7418c1079a1eb18703ef8473c3343c46c1d8e3833</citedby><cites>FETCH-LOGICAL-c333t-8adfe5c0be9485e17757fb9c7418c1079a1eb18703ef8473c3343c46c1d8e3833</cites><orcidid>0000-0003-1077-3560 ; 0000-0002-0422-0209 ; 0000-0003-3570-9290 ; 0000-0002-1667-9797 ; 0000-0002-5434-7945 ; 0000-0001-8128-6829</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9774857$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9774857$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hatton, Ross L.</creatorcontrib><creatorcontrib>Brock, Zachary</creatorcontrib><creatorcontrib>Chen, Shuoqi</creatorcontrib><creatorcontrib>Choset, Howie</creatorcontrib><creatorcontrib>Faraji, Hossein</creatorcontrib><creatorcontrib>Fu, Ruijie</creatorcontrib><creatorcontrib>Justus, Nathan</creatorcontrib><creatorcontrib>Ramasamy, Suresh</creatorcontrib><title>The Geometry of Optimal Gaits for Inertia-Dominated Kinematic Systems</title><title>IEEE transactions on robotics</title><addtitle>TRO</addtitle><description>Isolated mechanical systems-e.g., those floating in space, in free-fall, or on a frictionless surface-are able to achieve net rotation by cyclically changing their shape, even if they have no net angular momentum. Similarly, swimmers immersed in "perfect fluids" are able to use cyclic shape changes to both translate and rotate even if the swimmer-fluid system has no net linear or angular momentum. Finally, systems fully constrained by direct nonholonomic constraints (e.g., passive wheels) can push against these constraints to move through the world. Previous work has demonstrated that the displacement induced by these shape changes corresponds to the amount of constraint curvature that the gaits enclose. Properly assessing or optimizing the utility of a gait also requires considering the time or resources required to execute it: A gait that produces a small displacement per cycle, but that can be executed in a short time, may produce a faster average velocity than a gait that produces more displacement, but takes longer to complete a cycle at the same instantaneous effort. In this paper, we consider gaits under two instantaneous measures of effort. For each of these costs, we demonstrate that fixing the average instantaneous cost to a unit value allows us to transform the effort costs into time-to-execute costs for any given gait cycle. We then illustrate how the interaction between the constraint curvature and these costs leads to characteristic geometries for optimal cycles, in which the gait trajectories resemble elastic hoops distended from within by internal pressures.</description><subject>Angular momentum</subject><subject>Constraints</subject><subject>Cost function</subject><subject>Costs</subject><subject>Curvature</subject><subject>Displacement</subject><subject>Dynamics</subject><subject>Gait</subject><subject>Geometric mechanics</subject><subject>Internal pressure</subject><subject>Jacobian matrices</subject><subject>Kinematics</subject><subject>Kinetic energy</subject><subject>lie brackets</subject><subject>locomotion</subject><subject>Mechanical systems</subject><subject>Optimization</subject><subject>Shape</subject><subject>Swimming</subject><subject>Trajectory</subject><issn>1552-3098</issn><issn>1941-0468</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1PAjEQhhujiYjeTbw08bzY7nRpezSKSCQhUTw3pUxjCbuLbTnw7y2BeJo5PO98PITcczbinOmn5ediVLO6HgEfi0Y3F2TAteAVE2N1WfqmqStgWl2Tm5Q2jNVCMxiQyfIH6RT7FnM80N7TxS6H1m7p1IacqO8jnXUYc7DVa9-GzmZc04_QYWtzcPTrkDK26ZZcebtNeHeuQ_L9Nlm-vFfzxXT28jyvHADkStm1x8axFWqhGuRSNtKvtJOCK8eZ1JbjiivJAL0SEkpKgBNjx9cKQQEMyeNp7i72v3tM2Wz6fezKSlPLmgsAKY4UO1Eu9ilF9GYXy0_xYDgzR1mmyDJHWeYsq0QeTpGAiP-4lrLcKeEPjxJkOg</recordid><startdate>202210</startdate><enddate>202210</enddate><creator>Hatton, Ross L.</creator><creator>Brock, Zachary</creator><creator>Chen, Shuoqi</creator><creator>Choset, Howie</creator><creator>Faraji, Hossein</creator><creator>Fu, Ruijie</creator><creator>Justus, Nathan</creator><creator>Ramasamy, Suresh</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1077-3560</orcidid><orcidid>https://orcid.org/0000-0002-0422-0209</orcidid><orcidid>https://orcid.org/0000-0003-3570-9290</orcidid><orcidid>https://orcid.org/0000-0002-1667-9797</orcidid><orcidid>https://orcid.org/0000-0002-5434-7945</orcidid><orcidid>https://orcid.org/0000-0001-8128-6829</orcidid></search><sort><creationdate>202210</creationdate><title>The Geometry of Optimal Gaits for Inertia-Dominated Kinematic Systems</title><author>Hatton, Ross L. ; Brock, Zachary ; Chen, Shuoqi ; Choset, Howie ; Faraji, Hossein ; Fu, Ruijie ; Justus, Nathan ; Ramasamy, Suresh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-8adfe5c0be9485e17757fb9c7418c1079a1eb18703ef8473c3343c46c1d8e3833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Angular momentum</topic><topic>Constraints</topic><topic>Cost function</topic><topic>Costs</topic><topic>Curvature</topic><topic>Displacement</topic><topic>Dynamics</topic><topic>Gait</topic><topic>Geometric mechanics</topic><topic>Internal pressure</topic><topic>Jacobian matrices</topic><topic>Kinematics</topic><topic>Kinetic energy</topic><topic>lie brackets</topic><topic>locomotion</topic><topic>Mechanical systems</topic><topic>Optimization</topic><topic>Shape</topic><topic>Swimming</topic><topic>Trajectory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hatton, Ross L.</creatorcontrib><creatorcontrib>Brock, Zachary</creatorcontrib><creatorcontrib>Chen, Shuoqi</creatorcontrib><creatorcontrib>Choset, Howie</creatorcontrib><creatorcontrib>Faraji, Hossein</creatorcontrib><creatorcontrib>Fu, Ruijie</creatorcontrib><creatorcontrib>Justus, Nathan</creatorcontrib><creatorcontrib>Ramasamy, Suresh</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on robotics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hatton, Ross L.</au><au>Brock, Zachary</au><au>Chen, Shuoqi</au><au>Choset, Howie</au><au>Faraji, Hossein</au><au>Fu, Ruijie</au><au>Justus, Nathan</au><au>Ramasamy, Suresh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Geometry of Optimal Gaits for Inertia-Dominated Kinematic Systems</atitle><jtitle>IEEE transactions on robotics</jtitle><stitle>TRO</stitle><date>2022-10</date><risdate>2022</risdate><volume>38</volume><issue>5</issue><spage>3279</spage><epage>3299</epage><pages>3279-3299</pages><issn>1552-3098</issn><eissn>1941-0468</eissn><coden>ITREAE</coden><abstract>Isolated mechanical systems-e.g., those floating in space, in free-fall, or on a frictionless surface-are able to achieve net rotation by cyclically changing their shape, even if they have no net angular momentum. Similarly, swimmers immersed in "perfect fluids" are able to use cyclic shape changes to both translate and rotate even if the swimmer-fluid system has no net linear or angular momentum. Finally, systems fully constrained by direct nonholonomic constraints (e.g., passive wheels) can push against these constraints to move through the world. Previous work has demonstrated that the displacement induced by these shape changes corresponds to the amount of constraint curvature that the gaits enclose. Properly assessing or optimizing the utility of a gait also requires considering the time or resources required to execute it: A gait that produces a small displacement per cycle, but that can be executed in a short time, may produce a faster average velocity than a gait that produces more displacement, but takes longer to complete a cycle at the same instantaneous effort. In this paper, we consider gaits under two instantaneous measures of effort. For each of these costs, we demonstrate that fixing the average instantaneous cost to a unit value allows us to transform the effort costs into time-to-execute costs for any given gait cycle. We then illustrate how the interaction between the constraint curvature and these costs leads to characteristic geometries for optimal cycles, in which the gait trajectories resemble elastic hoops distended from within by internal pressures.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TRO.2022.3164595</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0003-1077-3560</orcidid><orcidid>https://orcid.org/0000-0002-0422-0209</orcidid><orcidid>https://orcid.org/0000-0003-3570-9290</orcidid><orcidid>https://orcid.org/0000-0002-1667-9797</orcidid><orcidid>https://orcid.org/0000-0002-5434-7945</orcidid><orcidid>https://orcid.org/0000-0001-8128-6829</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1552-3098 |
ispartof | IEEE transactions on robotics, 2022-10, Vol.38 (5), p.3279-3299 |
issn | 1552-3098 1941-0468 |
language | eng |
recordid | cdi_proquest_journals_2721433743 |
source | IEEE Electronic Library (IEL) |
subjects | Angular momentum Constraints Cost function Costs Curvature Displacement Dynamics Gait Geometric mechanics Internal pressure Jacobian matrices Kinematics Kinetic energy lie brackets locomotion Mechanical systems Optimization Shape Swimming Trajectory |
title | The Geometry of Optimal Gaits for Inertia-Dominated Kinematic Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T01%3A12%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Geometry%20of%20Optimal%20Gaits%20for%20Inertia-Dominated%20Kinematic%20Systems&rft.jtitle=IEEE%20transactions%20on%20robotics&rft.au=Hatton,%20Ross%20L.&rft.date=2022-10&rft.volume=38&rft.issue=5&rft.spage=3279&rft.epage=3299&rft.pages=3279-3299&rft.issn=1552-3098&rft.eissn=1941-0468&rft.coden=ITREAE&rft_id=info:doi/10.1109/TRO.2022.3164595&rft_dat=%3Cproquest_RIE%3E2721433743%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2721433743&rft_id=info:pmid/&rft_ieee_id=9774857&rfr_iscdi=true |