A Dual Fuzzy-Enhanced Neurodynamic Scheme for Model-Less Kinematic Control of Redundant and Hyperredundant Robots

Tracking control of redundant and hyperredundant manipulators is a fundamental and critical problem in practical applications. In order to effectively decrease the end-effector position errors, a novel dual fuzzy-enhanced neurodynamic (DFEN) scheme is put forward for solving the position error accum...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on fuzzy systems 2022-10, Vol.30 (10), p.4409-4422, Article 4409
Hauptverfasser: Tan, Ning, Ye, Zixiao, Yu, Peng, Ni, Fenglei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4422
container_issue 10
container_start_page 4409
container_title IEEE transactions on fuzzy systems
container_volume 30
creator Tan, Ning
Ye, Zixiao
Yu, Peng
Ni, Fenglei
description Tracking control of redundant and hyperredundant manipulators is a fundamental and critical problem in practical applications. In order to effectively decrease the end-effector position errors, a novel dual fuzzy-enhanced neurodynamic (DFEN) scheme is put forward for solving the position error accumulation problem followed by achieving accurate tracking control results. The proposed scheme is established based on a zeroing neurodynamic approach in conjunction with two fuzzy adjustment units that are capable of tuning the control parameters by monitoring the tracking error. Moreover, the DFEN scheme can effectively solve the tracking problem without requiring knowing a priori knowledge of the kinematic model of the robot. The convergence and the stability of the proposed approach are demonstrated by theoretical analysis. The effectiveness, accuracy, and robustness of the proposed DFEN scheme are verified on the simulative redundant manipulator, continuum robot, and hybrid robot (integrating the redundant manipulator and the continuum robot). A practical experiment is provided to validate the proposed scheme as well.
doi_str_mv 10.1109/TFUZZ.2022.3152077
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2721433716</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9714877</ieee_id><sourcerecordid>2721433716</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-ce03cd059aca46fba25e7b693664f8b8a338ba27a9c6e148b15485a17d72abd43</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRSMEEs8fgI0l1il-xU6WVaEUUUDisWETOfZETZXarZ0s0q_HpYgFC1YzujN3ruYkySXBI0JwcfM-_fj8HFFM6YiRjGIpD5ITUnCSYsz4YeyxYKmQWBwnpyEsMSY8I_lJshmj2161aNpvt0N6ZxfKajDoGXrvzGDVqtHoTS9gBah2Hj05A206hxDQY2Nhpbo4nzjbedciV6NXML01ynZIWYNmwxq8_5VeXeW6cJ4c1aoNcPFTz5KP6d37ZJbOX-4fJuN5qmmRdakGzLTBWaG04qKuFM1AVqJgQvA6r3LFWB5FqQotgPC8IhnPM0WkkVRVhrOz5Hp_d-3dpofQlUvXexsjSyop4YxJIuIW3W9p70LwUJdr36yUH0qCyx3a8httuUNb_qCNpvyPSTddRLHjoJr2f-vV3toAwG9WIeMHcfoFW3CIfQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2721433716</pqid></control><display><type>article</type><title>A Dual Fuzzy-Enhanced Neurodynamic Scheme for Model-Less Kinematic Control of Redundant and Hyperredundant Robots</title><source>IEEE Electronic Library (IEL)</source><creator>Tan, Ning ; Ye, Zixiao ; Yu, Peng ; Ni, Fenglei</creator><creatorcontrib>Tan, Ning ; Ye, Zixiao ; Yu, Peng ; Ni, Fenglei</creatorcontrib><description>Tracking control of redundant and hyperredundant manipulators is a fundamental and critical problem in practical applications. In order to effectively decrease the end-effector position errors, a novel dual fuzzy-enhanced neurodynamic (DFEN) scheme is put forward for solving the position error accumulation problem followed by achieving accurate tracking control results. The proposed scheme is established based on a zeroing neurodynamic approach in conjunction with two fuzzy adjustment units that are capable of tuning the control parameters by monitoring the tracking error. Moreover, the DFEN scheme can effectively solve the tracking problem without requiring knowing a priori knowledge of the kinematic model of the robot. The convergence and the stability of the proposed approach are demonstrated by theoretical analysis. The effectiveness, accuracy, and robustness of the proposed DFEN scheme are verified on the simulative redundant manipulator, continuum robot, and hybrid robot (integrating the redundant manipulator and the continuum robot). A practical experiment is provided to validate the proposed scheme as well.</description><identifier>ISSN: 1063-6706</identifier><identifier>ISSN: 1941-0034</identifier><identifier>EISSN: 1941-0034</identifier><identifier>DOI: 10.1109/TFUZZ.2022.3152077</identifier><identifier>CODEN: IEFSEV</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptation models ; End effectors ; Fuzzy control ; Fuzzy control system ; Fuzzy logic ; Kinematics ; Manipulators ; model free ; Neurodynamics ; Position errors ; Redundancy ; Robot arms ; Robot control ; robot manipulators ; Robots ; Stability analysis ; Tracking control ; Tracking errors ; Tracking problem ; Trajectory tracking ; unknown models ; zeroing neurodynamics</subject><ispartof>IEEE transactions on fuzzy systems, 2022-10, Vol.30 (10), p.4409-4422, Article 4409</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-ce03cd059aca46fba25e7b693664f8b8a338ba27a9c6e148b15485a17d72abd43</citedby><cites>FETCH-LOGICAL-c295t-ce03cd059aca46fba25e7b693664f8b8a338ba27a9c6e148b15485a17d72abd43</cites><orcidid>0000-0002-0184-1421 ; 0000-0001-5056-5032 ; 0000-0003-0710-6409 ; 0000-0001-6310-514X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9714877$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9714877$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tan, Ning</creatorcontrib><creatorcontrib>Ye, Zixiao</creatorcontrib><creatorcontrib>Yu, Peng</creatorcontrib><creatorcontrib>Ni, Fenglei</creatorcontrib><title>A Dual Fuzzy-Enhanced Neurodynamic Scheme for Model-Less Kinematic Control of Redundant and Hyperredundant Robots</title><title>IEEE transactions on fuzzy systems</title><addtitle>TFUZZ</addtitle><description>Tracking control of redundant and hyperredundant manipulators is a fundamental and critical problem in practical applications. In order to effectively decrease the end-effector position errors, a novel dual fuzzy-enhanced neurodynamic (DFEN) scheme is put forward for solving the position error accumulation problem followed by achieving accurate tracking control results. The proposed scheme is established based on a zeroing neurodynamic approach in conjunction with two fuzzy adjustment units that are capable of tuning the control parameters by monitoring the tracking error. Moreover, the DFEN scheme can effectively solve the tracking problem without requiring knowing a priori knowledge of the kinematic model of the robot. The convergence and the stability of the proposed approach are demonstrated by theoretical analysis. The effectiveness, accuracy, and robustness of the proposed DFEN scheme are verified on the simulative redundant manipulator, continuum robot, and hybrid robot (integrating the redundant manipulator and the continuum robot). A practical experiment is provided to validate the proposed scheme as well.</description><subject>Adaptation models</subject><subject>End effectors</subject><subject>Fuzzy control</subject><subject>Fuzzy control system</subject><subject>Fuzzy logic</subject><subject>Kinematics</subject><subject>Manipulators</subject><subject>model free</subject><subject>Neurodynamics</subject><subject>Position errors</subject><subject>Redundancy</subject><subject>Robot arms</subject><subject>Robot control</subject><subject>robot manipulators</subject><subject>Robots</subject><subject>Stability analysis</subject><subject>Tracking control</subject><subject>Tracking errors</subject><subject>Tracking problem</subject><subject>Trajectory tracking</subject><subject>unknown models</subject><subject>zeroing neurodynamics</subject><issn>1063-6706</issn><issn>1941-0034</issn><issn>1941-0034</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kMtOwzAQRSMEEs8fgI0l1il-xU6WVaEUUUDisWETOfZETZXarZ0s0q_HpYgFC1YzujN3ruYkySXBI0JwcfM-_fj8HFFM6YiRjGIpD5ITUnCSYsz4YeyxYKmQWBwnpyEsMSY8I_lJshmj2161aNpvt0N6ZxfKajDoGXrvzGDVqtHoTS9gBah2Hj05A206hxDQY2Nhpbo4nzjbedciV6NXML01ynZIWYNmwxq8_5VeXeW6cJ4c1aoNcPFTz5KP6d37ZJbOX-4fJuN5qmmRdakGzLTBWaG04qKuFM1AVqJgQvA6r3LFWB5FqQotgPC8IhnPM0WkkVRVhrOz5Hp_d-3dpofQlUvXexsjSyop4YxJIuIW3W9p70LwUJdr36yUH0qCyx3a8httuUNb_qCNpvyPSTddRLHjoJr2f-vV3toAwG9WIeMHcfoFW3CIfQ</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Tan, Ning</creator><creator>Ye, Zixiao</creator><creator>Yu, Peng</creator><creator>Ni, Fenglei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-0184-1421</orcidid><orcidid>https://orcid.org/0000-0001-5056-5032</orcidid><orcidid>https://orcid.org/0000-0003-0710-6409</orcidid><orcidid>https://orcid.org/0000-0001-6310-514X</orcidid></search><sort><creationdate>20221001</creationdate><title>A Dual Fuzzy-Enhanced Neurodynamic Scheme for Model-Less Kinematic Control of Redundant and Hyperredundant Robots</title><author>Tan, Ning ; Ye, Zixiao ; Yu, Peng ; Ni, Fenglei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-ce03cd059aca46fba25e7b693664f8b8a338ba27a9c6e148b15485a17d72abd43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adaptation models</topic><topic>End effectors</topic><topic>Fuzzy control</topic><topic>Fuzzy control system</topic><topic>Fuzzy logic</topic><topic>Kinematics</topic><topic>Manipulators</topic><topic>model free</topic><topic>Neurodynamics</topic><topic>Position errors</topic><topic>Redundancy</topic><topic>Robot arms</topic><topic>Robot control</topic><topic>robot manipulators</topic><topic>Robots</topic><topic>Stability analysis</topic><topic>Tracking control</topic><topic>Tracking errors</topic><topic>Tracking problem</topic><topic>Trajectory tracking</topic><topic>unknown models</topic><topic>zeroing neurodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tan, Ning</creatorcontrib><creatorcontrib>Ye, Zixiao</creatorcontrib><creatorcontrib>Yu, Peng</creatorcontrib><creatorcontrib>Ni, Fenglei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on fuzzy systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tan, Ning</au><au>Ye, Zixiao</au><au>Yu, Peng</au><au>Ni, Fenglei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Dual Fuzzy-Enhanced Neurodynamic Scheme for Model-Less Kinematic Control of Redundant and Hyperredundant Robots</atitle><jtitle>IEEE transactions on fuzzy systems</jtitle><stitle>TFUZZ</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>30</volume><issue>10</issue><spage>4409</spage><epage>4422</epage><pages>4409-4422</pages><artnum>4409</artnum><issn>1063-6706</issn><issn>1941-0034</issn><eissn>1941-0034</eissn><coden>IEFSEV</coden><abstract>Tracking control of redundant and hyperredundant manipulators is a fundamental and critical problem in practical applications. In order to effectively decrease the end-effector position errors, a novel dual fuzzy-enhanced neurodynamic (DFEN) scheme is put forward for solving the position error accumulation problem followed by achieving accurate tracking control results. The proposed scheme is established based on a zeroing neurodynamic approach in conjunction with two fuzzy adjustment units that are capable of tuning the control parameters by monitoring the tracking error. Moreover, the DFEN scheme can effectively solve the tracking problem without requiring knowing a priori knowledge of the kinematic model of the robot. The convergence and the stability of the proposed approach are demonstrated by theoretical analysis. The effectiveness, accuracy, and robustness of the proposed DFEN scheme are verified on the simulative redundant manipulator, continuum robot, and hybrid robot (integrating the redundant manipulator and the continuum robot). A practical experiment is provided to validate the proposed scheme as well.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TFUZZ.2022.3152077</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-0184-1421</orcidid><orcidid>https://orcid.org/0000-0001-5056-5032</orcidid><orcidid>https://orcid.org/0000-0003-0710-6409</orcidid><orcidid>https://orcid.org/0000-0001-6310-514X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-6706
ispartof IEEE transactions on fuzzy systems, 2022-10, Vol.30 (10), p.4409-4422, Article 4409
issn 1063-6706
1941-0034
1941-0034
language eng
recordid cdi_proquest_journals_2721433716
source IEEE Electronic Library (IEL)
subjects Adaptation models
End effectors
Fuzzy control
Fuzzy control system
Fuzzy logic
Kinematics
Manipulators
model free
Neurodynamics
Position errors
Redundancy
Robot arms
Robot control
robot manipulators
Robots
Stability analysis
Tracking control
Tracking errors
Tracking problem
Trajectory tracking
unknown models
zeroing neurodynamics
title A Dual Fuzzy-Enhanced Neurodynamic Scheme for Model-Less Kinematic Control of Redundant and Hyperredundant Robots
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T06%3A04%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Dual%20Fuzzy-Enhanced%20Neurodynamic%20Scheme%20for%20Model-Less%20Kinematic%20Control%20of%20Redundant%20and%20Hyperredundant%20Robots&rft.jtitle=IEEE%20transactions%20on%20fuzzy%20systems&rft.au=Tan,%20Ning&rft.date=2022-10-01&rft.volume=30&rft.issue=10&rft.spage=4409&rft.epage=4422&rft.pages=4409-4422&rft.artnum=4409&rft.issn=1063-6706&rft.eissn=1941-0034&rft.coden=IEFSEV&rft_id=info:doi/10.1109/TFUZZ.2022.3152077&rft_dat=%3Cproquest_RIE%3E2721433716%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2721433716&rft_id=info:pmid/&rft_ieee_id=9714877&rfr_iscdi=true