Spherical Harmonic Decomposition of a Sound Field Using Microphones on a Circumferential Contour Around a Non-Spherical Baffle
Spherical harmonic (SH) representations of sound fields are usually obtained from microphone arrays with rigid spherical baffles whereby the microphones are distributed over the entire surface of the baffle. We present a method that overcomes the requirement for the baffle to be spherical. Furthermo...
Gespeichert in:
Veröffentlicht in: | IEEE/ACM transactions on audio, speech, and language processing speech, and language processing, 2022, Vol.30, p.3110-3119 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3119 |
---|---|
container_issue | |
container_start_page | 3110 |
container_title | IEEE/ACM transactions on audio, speech, and language processing |
container_volume | 30 |
creator | Ahrens, Jens Helmholz, Hannes Alon, David Lou Amengual Gari, Sebastia V. |
description | Spherical harmonic (SH) representations of sound fields are usually obtained from microphone arrays with rigid spherical baffles whereby the microphones are distributed over the entire surface of the baffle. We present a method that overcomes the requirement for the baffle to be spherical. Furthermore, the microphones can be placed along a circumferential contour around the baffle. This greatly reduces the required number of microphones for a given spatial resolution compared to conventional spherical arrays. Our method is based on the analytical solution for SH decomposition based on observations along the equator of a rigid sphere that we presented recently. It incorporates a calibration stage in which the microphone signals due to a suitable set of calibration sound fields are projected onto the SH decomposition of those same sound fields on the surface of a notional rigid sphere by means of a linear filtering operation. The filter coefficients are computed from the calibration data via a least/squares fit. We present an evaluation of the method based on the application of binaural rendering of the SH decomposition of the signals from an 18/element array that uses a human head as the baffle and that provides 8th ambisonic order. We analyse the accuracy and robustness of our method based on simulated data as well as based on measured data from a prototype. |
doi_str_mv | 10.1109/TASLP.2022.3209940 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2721429439</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9904318</ieee_id><sourcerecordid>2721429439</sourcerecordid><originalsourceid>FETCH-LOGICAL-c366t-2c6064ee46a1cc047e975f059ccffcd0dee80361d8cce09ac56a9ad26e07d72a3</originalsourceid><addsrcrecordid>eNpFkU1v1DAQhiMEElXpHygXS5yzHX_EWR-XhbZIC1Ta9mw59ph1ldjBToS49Lc37ZZymjm8H5p5quqcwopSUBe3m_3uZsWAsRVnoJSAN9UJ40zVioN4-29nCt5XZ6XcAwCFVqlWnFQP-_GAOVjTk2uThxSDJV_QpmFMJUwhRZI8MWSf5ujIZcDekbsS4i_yPdicxkOKWMiiMmQbsp0HjxnjFJa4bYpTmjPZ5GevIT9SrP-3fTbe9_iheudNX_DsZZ5Wd5dfb7fX9e7n1bftZldbLuVUMytBCkQhDbUWRIuqbTw0ylrvrQOHuAYuqVtbi6CMbaRRxjGJ0LqWGX5a7Y-55Q-Oc6fHHAaT_-pkgs5Y0GR70PZg-gFz0QU1MCmkapj2pqNaNHatTSeUbhGbruGuo9ItqZ-OqWNOv2csk75fLo7LIZq1jAqmBFeLih1Vy8NKyehf2ynoJ4D6GaB-AqhfAC6mj0dTQMRXg1IgOF3zR4Q8mPk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2721429439</pqid></control><display><type>article</type><title>Spherical Harmonic Decomposition of a Sound Field Using Microphones on a Circumferential Contour Around a Non-Spherical Baffle</title><source>IEEE Electronic Library (IEL)</source><creator>Ahrens, Jens ; Helmholz, Hannes ; Alon, David Lou ; Amengual Gari, Sebastia V.</creator><creatorcontrib>Ahrens, Jens ; Helmholz, Hannes ; Alon, David Lou ; Amengual Gari, Sebastia V.</creatorcontrib><description>Spherical harmonic (SH) representations of sound fields are usually obtained from microphone arrays with rigid spherical baffles whereby the microphones are distributed over the entire surface of the baffle. We present a method that overcomes the requirement for the baffle to be spherical. Furthermore, the microphones can be placed along a circumferential contour around the baffle. This greatly reduces the required number of microphones for a given spatial resolution compared to conventional spherical arrays. Our method is based on the analytical solution for SH decomposition based on observations along the equator of a rigid sphere that we presented recently. It incorporates a calibration stage in which the microphone signals due to a suitable set of calibration sound fields are projected onto the SH decomposition of those same sound fields on the surface of a notional rigid sphere by means of a linear filtering operation. The filter coefficients are computed from the calibration data via a least/squares fit. We present an evaluation of the method based on the application of binaural rendering of the SH decomposition of the signals from an 18/element array that uses a human head as the baffle and that provides 8th ambisonic order. We analyse the accuracy and robustness of our method based on simulated data as well as based on measured data from a prototype.</description><identifier>ISSN: 2329-9290</identifier><identifier>ISSN: 2329-9304</identifier><identifier>EISSN: 2329-9304</identifier><identifier>DOI: 10.1109/TASLP.2022.3209940</identifier><identifier>CODEN: ITASFA</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Arrays ; augmented reality ; Binaural rendering ; Calibration ; Cameras ; Contours ; Decomposition ; Encoding ; Exact solutions ; Harmonic analysis ; Linear filters ; microphone array ; Microphone arrays ; Microphones ; Rendering (computer graphics) ; Scattering ; Sound fields ; Spatial resolution ; Spherical harmonics</subject><ispartof>IEEE/ACM transactions on audio, speech, and language processing, 2022, Vol.30, p.3110-3119</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c366t-2c6064ee46a1cc047e975f059ccffcd0dee80361d8cce09ac56a9ad26e07d72a3</cites><orcidid>0000-0002-1706-3564 ; 0000-0002-3098-9847 ; 0000-0002-9801-1108</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9904318$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,552,780,784,796,885,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9904318$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://research.chalmers.se/publication/532369$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Ahrens, Jens</creatorcontrib><creatorcontrib>Helmholz, Hannes</creatorcontrib><creatorcontrib>Alon, David Lou</creatorcontrib><creatorcontrib>Amengual Gari, Sebastia V.</creatorcontrib><title>Spherical Harmonic Decomposition of a Sound Field Using Microphones on a Circumferential Contour Around a Non-Spherical Baffle</title><title>IEEE/ACM transactions on audio, speech, and language processing</title><addtitle>TASLP</addtitle><description>Spherical harmonic (SH) representations of sound fields are usually obtained from microphone arrays with rigid spherical baffles whereby the microphones are distributed over the entire surface of the baffle. We present a method that overcomes the requirement for the baffle to be spherical. Furthermore, the microphones can be placed along a circumferential contour around the baffle. This greatly reduces the required number of microphones for a given spatial resolution compared to conventional spherical arrays. Our method is based on the analytical solution for SH decomposition based on observations along the equator of a rigid sphere that we presented recently. It incorporates a calibration stage in which the microphone signals due to a suitable set of calibration sound fields are projected onto the SH decomposition of those same sound fields on the surface of a notional rigid sphere by means of a linear filtering operation. The filter coefficients are computed from the calibration data via a least/squares fit. We present an evaluation of the method based on the application of binaural rendering of the SH decomposition of the signals from an 18/element array that uses a human head as the baffle and that provides 8th ambisonic order. We analyse the accuracy and robustness of our method based on simulated data as well as based on measured data from a prototype.</description><subject>Arrays</subject><subject>augmented reality</subject><subject>Binaural rendering</subject><subject>Calibration</subject><subject>Cameras</subject><subject>Contours</subject><subject>Decomposition</subject><subject>Encoding</subject><subject>Exact solutions</subject><subject>Harmonic analysis</subject><subject>Linear filters</subject><subject>microphone array</subject><subject>Microphone arrays</subject><subject>Microphones</subject><subject>Rendering (computer graphics)</subject><subject>Scattering</subject><subject>Sound fields</subject><subject>Spatial resolution</subject><subject>Spherical harmonics</subject><issn>2329-9290</issn><issn>2329-9304</issn><issn>2329-9304</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>D8T</sourceid><recordid>eNpFkU1v1DAQhiMEElXpHygXS5yzHX_EWR-XhbZIC1Ta9mw59ph1ldjBToS49Lc37ZZymjm8H5p5quqcwopSUBe3m_3uZsWAsRVnoJSAN9UJ40zVioN4-29nCt5XZ6XcAwCFVqlWnFQP-_GAOVjTk2uThxSDJV_QpmFMJUwhRZI8MWSf5ujIZcDekbsS4i_yPdicxkOKWMiiMmQbsp0HjxnjFJa4bYpTmjPZ5GevIT9SrP-3fTbe9_iheudNX_DsZZ5Wd5dfb7fX9e7n1bftZldbLuVUMytBCkQhDbUWRIuqbTw0ylrvrQOHuAYuqVtbi6CMbaRRxjGJ0LqWGX5a7Y-55Q-Oc6fHHAaT_-pkgs5Y0GR70PZg-gFz0QU1MCmkapj2pqNaNHatTSeUbhGbruGuo9ItqZ-OqWNOv2csk75fLo7LIZq1jAqmBFeLih1Vy8NKyehf2ynoJ4D6GaB-AqhfAC6mj0dTQMRXg1IgOF3zR4Q8mPk</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Ahrens, Jens</creator><creator>Helmholz, Hannes</creator><creator>Alon, David Lou</creator><creator>Amengual Gari, Sebastia V.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>ABBSD</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>F1S</scope><scope>ZZAVC</scope><orcidid>https://orcid.org/0000-0002-1706-3564</orcidid><orcidid>https://orcid.org/0000-0002-3098-9847</orcidid><orcidid>https://orcid.org/0000-0002-9801-1108</orcidid></search><sort><creationdate>2022</creationdate><title>Spherical Harmonic Decomposition of a Sound Field Using Microphones on a Circumferential Contour Around a Non-Spherical Baffle</title><author>Ahrens, Jens ; Helmholz, Hannes ; Alon, David Lou ; Amengual Gari, Sebastia V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c366t-2c6064ee46a1cc047e975f059ccffcd0dee80361d8cce09ac56a9ad26e07d72a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Arrays</topic><topic>augmented reality</topic><topic>Binaural rendering</topic><topic>Calibration</topic><topic>Cameras</topic><topic>Contours</topic><topic>Decomposition</topic><topic>Encoding</topic><topic>Exact solutions</topic><topic>Harmonic analysis</topic><topic>Linear filters</topic><topic>microphone array</topic><topic>Microphone arrays</topic><topic>Microphones</topic><topic>Rendering (computer graphics)</topic><topic>Scattering</topic><topic>Sound fields</topic><topic>Spatial resolution</topic><topic>Spherical harmonics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ahrens, Jens</creatorcontrib><creatorcontrib>Helmholz, Hannes</creatorcontrib><creatorcontrib>Alon, David Lou</creatorcontrib><creatorcontrib>Amengual Gari, Sebastia V.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>SWEPUB Chalmers tekniska högskola full text</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Chalmers tekniska högskola</collection><collection>SwePub Articles full text</collection><jtitle>IEEE/ACM transactions on audio, speech, and language processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ahrens, Jens</au><au>Helmholz, Hannes</au><au>Alon, David Lou</au><au>Amengual Gari, Sebastia V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spherical Harmonic Decomposition of a Sound Field Using Microphones on a Circumferential Contour Around a Non-Spherical Baffle</atitle><jtitle>IEEE/ACM transactions on audio, speech, and language processing</jtitle><stitle>TASLP</stitle><date>2022</date><risdate>2022</risdate><volume>30</volume><spage>3110</spage><epage>3119</epage><pages>3110-3119</pages><issn>2329-9290</issn><issn>2329-9304</issn><eissn>2329-9304</eissn><coden>ITASFA</coden><abstract>Spherical harmonic (SH) representations of sound fields are usually obtained from microphone arrays with rigid spherical baffles whereby the microphones are distributed over the entire surface of the baffle. We present a method that overcomes the requirement for the baffle to be spherical. Furthermore, the microphones can be placed along a circumferential contour around the baffle. This greatly reduces the required number of microphones for a given spatial resolution compared to conventional spherical arrays. Our method is based on the analytical solution for SH decomposition based on observations along the equator of a rigid sphere that we presented recently. It incorporates a calibration stage in which the microphone signals due to a suitable set of calibration sound fields are projected onto the SH decomposition of those same sound fields on the surface of a notional rigid sphere by means of a linear filtering operation. The filter coefficients are computed from the calibration data via a least/squares fit. We present an evaluation of the method based on the application of binaural rendering of the SH decomposition of the signals from an 18/element array that uses a human head as the baffle and that provides 8th ambisonic order. We analyse the accuracy and robustness of our method based on simulated data as well as based on measured data from a prototype.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TASLP.2022.3209940</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-1706-3564</orcidid><orcidid>https://orcid.org/0000-0002-3098-9847</orcidid><orcidid>https://orcid.org/0000-0002-9801-1108</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2329-9290 |
ispartof | IEEE/ACM transactions on audio, speech, and language processing, 2022, Vol.30, p.3110-3119 |
issn | 2329-9290 2329-9304 2329-9304 |
language | eng |
recordid | cdi_proquest_journals_2721429439 |
source | IEEE Electronic Library (IEL) |
subjects | Arrays augmented reality Binaural rendering Calibration Cameras Contours Decomposition Encoding Exact solutions Harmonic analysis Linear filters microphone array Microphone arrays Microphones Rendering (computer graphics) Scattering Sound fields Spatial resolution Spherical harmonics |
title | Spherical Harmonic Decomposition of a Sound Field Using Microphones on a Circumferential Contour Around a Non-Spherical Baffle |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T04%3A05%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spherical%20Harmonic%20Decomposition%20of%20a%20Sound%20Field%20Using%20Microphones%20on%20a%20Circumferential%20Contour%20Around%20a%20Non-Spherical%20Baffle&rft.jtitle=IEEE/ACM%20transactions%20on%20audio,%20speech,%20and%20language%20processing&rft.au=Ahrens,%20Jens&rft.date=2022&rft.volume=30&rft.spage=3110&rft.epage=3119&rft.pages=3110-3119&rft.issn=2329-9290&rft.eissn=2329-9304&rft.coden=ITASFA&rft_id=info:doi/10.1109/TASLP.2022.3209940&rft_dat=%3Cproquest_RIE%3E2721429439%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2721429439&rft_id=info:pmid/&rft_ieee_id=9904318&rfr_iscdi=true |