CBASH: Combined Backbone and Advanced Selection Heads With Object Semantic Proposals for Weakly Supervised Object Detection

Most recent object detection methods have achieved growing performance on public datasets. However, enormous efforts are needed for these methods due to the extensive annotations of ground-truth boxes. Weakly Supervised Object Detection (WSOD) methods hence have been proposed to solve this problem a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems for video technology 2022-10, Vol.32 (10), p.6502-6514
Hauptverfasser: Xia, Ruiyang, Li, Guoquan, Huang, Zhengwen, Meng, Hongying, Pang, Yu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6514
container_issue 10
container_start_page 6502
container_title IEEE transactions on circuits and systems for video technology
container_volume 32
creator Xia, Ruiyang
Li, Guoquan
Huang, Zhengwen
Meng, Hongying
Pang, Yu
description Most recent object detection methods have achieved growing performance on public datasets. However, enormous efforts are needed for these methods due to the extensive annotations of ground-truth boxes. Weakly Supervised Object Detection (WSOD) methods hence have been proposed to solve this problem as only image-level annotations are required and then output bounding boxes related to the objects. In order to further elevate the weakly supervised detection methods on the extraction of reasonable features, the training of potential positive proposals, and the generation of proposals before training, we propose a new Combined Backbone and Advanced Selection Heads (CBASH) method with the proposals generated from the object semantic information. Specifically, Combined Backbone will make the unobvious object features more noticeable, Advanced Selection Heads promote more potential positive proposals to get training, and the generated object semantic proposals elevate the quality and quantity of positive proposals. The proposed method is evaluated on the challenging PASCAL VOC 2007 and 2012 benchmark datasets. Experimental results show that our proposed method can achieve improved performance on both VOC 2007 and VOC 2012 datasets and outperforms the existing state-of-the-art methods.
doi_str_mv 10.1109/TCSVT.2022.3168547
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2721427999</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9759396</ieee_id><sourcerecordid>2721427999</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-c80c8f7e97c4c35a5b7b09504848f31f87fa36f3abc3fb74b8879ef04f67545b3</originalsourceid><addsrcrecordid>eNo9kFtLAzEQhRdRsFb_gL4EfN6ay2aT-NaulwqFClvt45JkE9xeNjXZFop_3tQWn2aYOecM8yXJLYIDhKB4mBXl52yAIcYDgnJOM3aW9BClPMUY0vPYQ4pSjhG9TK5CWECIMp6xXvJTjIbl-BEUbq2a1tRgJPVSudYA2dZgWO9kq-O0NCuju8a1YGxkHcC86b7AVC3iMO7Wsu0aDd6927ggVwFY58HcyOVqD8rtxvhdE2LISf9kumPWdXJho9rcnGo_-Xh5nhXjdDJ9fSuGk1QTIrpUc6i5ZUYwnWlCJVVMQUFhfIBbgixnVpLcEqk0sYplinMmjIWZzRnNqCL95P6Yu_Hue2tCVy3c1rfxZIUZRhlmQoiowkeV9i4Eb2y18c1a-n2FYHWAXP1Brg6QqxPkaLo7mhpjzL9BMCqIyMkv6IZ5Ag</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2721427999</pqid></control><display><type>article</type><title>CBASH: Combined Backbone and Advanced Selection Heads With Object Semantic Proposals for Weakly Supervised Object Detection</title><source>IEEE Electronic Library (IEL)</source><creator>Xia, Ruiyang ; Li, Guoquan ; Huang, Zhengwen ; Meng, Hongying ; Pang, Yu</creator><creatorcontrib>Xia, Ruiyang ; Li, Guoquan ; Huang, Zhengwen ; Meng, Hongying ; Pang, Yu</creatorcontrib><description>Most recent object detection methods have achieved growing performance on public datasets. However, enormous efforts are needed for these methods due to the extensive annotations of ground-truth boxes. Weakly Supervised Object Detection (WSOD) methods hence have been proposed to solve this problem as only image-level annotations are required and then output bounding boxes related to the objects. In order to further elevate the weakly supervised detection methods on the extraction of reasonable features, the training of potential positive proposals, and the generation of proposals before training, we propose a new Combined Backbone and Advanced Selection Heads (CBASH) method with the proposals generated from the object semantic information. Specifically, Combined Backbone will make the unobvious object features more noticeable, Advanced Selection Heads promote more potential positive proposals to get training, and the generated object semantic proposals elevate the quality and quantity of positive proposals. The proposed method is evaluated on the challenging PASCAL VOC 2007 and 2012 benchmark datasets. Experimental results show that our proposed method can achieve improved performance on both VOC 2007 and VOC 2012 datasets and outperforms the existing state-of-the-art methods.</description><identifier>ISSN: 1051-8215</identifier><identifier>EISSN: 1558-2205</identifier><identifier>DOI: 10.1109/TCSVT.2022.3168547</identifier><identifier>CODEN: ITCTEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>advanced selection heads ; Annotations ; Boxes ; combined backbone ; Datasets ; Feature extraction ; Head ; image-level annotations ; Location awareness ; Object detection ; Object recognition ; object semantic proposals ; Proposals ; Semantics ; Training ; Weakly supervised object detection</subject><ispartof>IEEE transactions on circuits and systems for video technology, 2022-10, Vol.32 (10), p.6502-6514</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-c80c8f7e97c4c35a5b7b09504848f31f87fa36f3abc3fb74b8879ef04f67545b3</citedby><cites>FETCH-LOGICAL-c339t-c80c8f7e97c4c35a5b7b09504848f31f87fa36f3abc3fb74b8879ef04f67545b3</cites><orcidid>0000-0002-7507-5387 ; 0000-0002-8836-1382 ; 0000-0003-2426-242X ; 0000-0001-8022-743X ; 0000-0002-2421-9512</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9759396$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27911,27912,54745</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9759396$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xia, Ruiyang</creatorcontrib><creatorcontrib>Li, Guoquan</creatorcontrib><creatorcontrib>Huang, Zhengwen</creatorcontrib><creatorcontrib>Meng, Hongying</creatorcontrib><creatorcontrib>Pang, Yu</creatorcontrib><title>CBASH: Combined Backbone and Advanced Selection Heads With Object Semantic Proposals for Weakly Supervised Object Detection</title><title>IEEE transactions on circuits and systems for video technology</title><addtitle>TCSVT</addtitle><description>Most recent object detection methods have achieved growing performance on public datasets. However, enormous efforts are needed for these methods due to the extensive annotations of ground-truth boxes. Weakly Supervised Object Detection (WSOD) methods hence have been proposed to solve this problem as only image-level annotations are required and then output bounding boxes related to the objects. In order to further elevate the weakly supervised detection methods on the extraction of reasonable features, the training of potential positive proposals, and the generation of proposals before training, we propose a new Combined Backbone and Advanced Selection Heads (CBASH) method with the proposals generated from the object semantic information. Specifically, Combined Backbone will make the unobvious object features more noticeable, Advanced Selection Heads promote more potential positive proposals to get training, and the generated object semantic proposals elevate the quality and quantity of positive proposals. The proposed method is evaluated on the challenging PASCAL VOC 2007 and 2012 benchmark datasets. Experimental results show that our proposed method can achieve improved performance on both VOC 2007 and VOC 2012 datasets and outperforms the existing state-of-the-art methods.</description><subject>advanced selection heads</subject><subject>Annotations</subject><subject>Boxes</subject><subject>combined backbone</subject><subject>Datasets</subject><subject>Feature extraction</subject><subject>Head</subject><subject>image-level annotations</subject><subject>Location awareness</subject><subject>Object detection</subject><subject>Object recognition</subject><subject>object semantic proposals</subject><subject>Proposals</subject><subject>Semantics</subject><subject>Training</subject><subject>Weakly supervised object detection</subject><issn>1051-8215</issn><issn>1558-2205</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kFtLAzEQhRdRsFb_gL4EfN6ay2aT-NaulwqFClvt45JkE9xeNjXZFop_3tQWn2aYOecM8yXJLYIDhKB4mBXl52yAIcYDgnJOM3aW9BClPMUY0vPYQ4pSjhG9TK5CWECIMp6xXvJTjIbl-BEUbq2a1tRgJPVSudYA2dZgWO9kq-O0NCuju8a1YGxkHcC86b7AVC3iMO7Wsu0aDd6927ggVwFY58HcyOVqD8rtxvhdE2LISf9kumPWdXJho9rcnGo_-Xh5nhXjdDJ9fSuGk1QTIrpUc6i5ZUYwnWlCJVVMQUFhfIBbgixnVpLcEqk0sYplinMmjIWZzRnNqCL95P6Yu_Hue2tCVy3c1rfxZIUZRhlmQoiowkeV9i4Eb2y18c1a-n2FYHWAXP1Brg6QqxPkaLo7mhpjzL9BMCqIyMkv6IZ5Ag</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Xia, Ruiyang</creator><creator>Li, Guoquan</creator><creator>Huang, Zhengwen</creator><creator>Meng, Hongying</creator><creator>Pang, Yu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-7507-5387</orcidid><orcidid>https://orcid.org/0000-0002-8836-1382</orcidid><orcidid>https://orcid.org/0000-0003-2426-242X</orcidid><orcidid>https://orcid.org/0000-0001-8022-743X</orcidid><orcidid>https://orcid.org/0000-0002-2421-9512</orcidid></search><sort><creationdate>20221001</creationdate><title>CBASH: Combined Backbone and Advanced Selection Heads With Object Semantic Proposals for Weakly Supervised Object Detection</title><author>Xia, Ruiyang ; Li, Guoquan ; Huang, Zhengwen ; Meng, Hongying ; Pang, Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-c80c8f7e97c4c35a5b7b09504848f31f87fa36f3abc3fb74b8879ef04f67545b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>advanced selection heads</topic><topic>Annotations</topic><topic>Boxes</topic><topic>combined backbone</topic><topic>Datasets</topic><topic>Feature extraction</topic><topic>Head</topic><topic>image-level annotations</topic><topic>Location awareness</topic><topic>Object detection</topic><topic>Object recognition</topic><topic>object semantic proposals</topic><topic>Proposals</topic><topic>Semantics</topic><topic>Training</topic><topic>Weakly supervised object detection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xia, Ruiyang</creatorcontrib><creatorcontrib>Li, Guoquan</creatorcontrib><creatorcontrib>Huang, Zhengwen</creatorcontrib><creatorcontrib>Meng, Hongying</creatorcontrib><creatorcontrib>Pang, Yu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on circuits and systems for video technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xia, Ruiyang</au><au>Li, Guoquan</au><au>Huang, Zhengwen</au><au>Meng, Hongying</au><au>Pang, Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CBASH: Combined Backbone and Advanced Selection Heads With Object Semantic Proposals for Weakly Supervised Object Detection</atitle><jtitle>IEEE transactions on circuits and systems for video technology</jtitle><stitle>TCSVT</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>32</volume><issue>10</issue><spage>6502</spage><epage>6514</epage><pages>6502-6514</pages><issn>1051-8215</issn><eissn>1558-2205</eissn><coden>ITCTEM</coden><abstract>Most recent object detection methods have achieved growing performance on public datasets. However, enormous efforts are needed for these methods due to the extensive annotations of ground-truth boxes. Weakly Supervised Object Detection (WSOD) methods hence have been proposed to solve this problem as only image-level annotations are required and then output bounding boxes related to the objects. In order to further elevate the weakly supervised detection methods on the extraction of reasonable features, the training of potential positive proposals, and the generation of proposals before training, we propose a new Combined Backbone and Advanced Selection Heads (CBASH) method with the proposals generated from the object semantic information. Specifically, Combined Backbone will make the unobvious object features more noticeable, Advanced Selection Heads promote more potential positive proposals to get training, and the generated object semantic proposals elevate the quality and quantity of positive proposals. The proposed method is evaluated on the challenging PASCAL VOC 2007 and 2012 benchmark datasets. Experimental results show that our proposed method can achieve improved performance on both VOC 2007 and VOC 2012 datasets and outperforms the existing state-of-the-art methods.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSVT.2022.3168547</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-7507-5387</orcidid><orcidid>https://orcid.org/0000-0002-8836-1382</orcidid><orcidid>https://orcid.org/0000-0003-2426-242X</orcidid><orcidid>https://orcid.org/0000-0001-8022-743X</orcidid><orcidid>https://orcid.org/0000-0002-2421-9512</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-8215
ispartof IEEE transactions on circuits and systems for video technology, 2022-10, Vol.32 (10), p.6502-6514
issn 1051-8215
1558-2205
language eng
recordid cdi_proquest_journals_2721427999
source IEEE Electronic Library (IEL)
subjects advanced selection heads
Annotations
Boxes
combined backbone
Datasets
Feature extraction
Head
image-level annotations
Location awareness
Object detection
Object recognition
object semantic proposals
Proposals
Semantics
Training
Weakly supervised object detection
title CBASH: Combined Backbone and Advanced Selection Heads With Object Semantic Proposals for Weakly Supervised Object Detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T00%3A27%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CBASH:%20Combined%20Backbone%20and%20Advanced%20Selection%20Heads%20With%20Object%20Semantic%20Proposals%20for%20Weakly%20Supervised%20Object%20Detection&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems%20for%20video%20technology&rft.au=Xia,%20Ruiyang&rft.date=2022-10-01&rft.volume=32&rft.issue=10&rft.spage=6502&rft.epage=6514&rft.pages=6502-6514&rft.issn=1051-8215&rft.eissn=1558-2205&rft.coden=ITCTEM&rft_id=info:doi/10.1109/TCSVT.2022.3168547&rft_dat=%3Cproquest_RIE%3E2721427999%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2721427999&rft_id=info:pmid/&rft_ieee_id=9759396&rfr_iscdi=true