Node-importance ranking in scale-free networks: a network metric response model and its solution algorithm

A new node-importance ranking model and its solution algorithm for scale-free networks are proposed. The general idea is as follows: first, we construct a node-importance ranking model targeting the fastest network collapse, which is identified by the maximal variation in integrated network metrics....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of supercomputing 2022-10, Vol.78 (15), p.17450-17469
Hauptverfasser: Yu, Anqi, Wang, Nuo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 17469
container_issue 15
container_start_page 17450
container_title The Journal of supercomputing
container_volume 78
creator Yu, Anqi
Wang, Nuo
description A new node-importance ranking model and its solution algorithm for scale-free networks are proposed. The general idea is as follows: first, we construct a node-importance ranking model targeting the fastest network collapse, which is identified by the maximal variation in integrated network metrics. We then combine the genetic algorithm and variable neighbourhood search and improve it in initial population generation, neighbourhood search, and fitness evaluation. Finally, we investigate the BA network and container-shipping network. By comparison, the proposed method demonstrates a 7.9 and 16.8% improvement in effectiveness over betweenness and degree, respectively, in the BA network. The above indexes come to 15.1 and 41.3% in the container-shipping network. Moreover, the proposed algorithm reveals an 8.1 and 6.3% improvement in effectiveness, and a 63.7 and 67.1% reduction in computation time in the two cases, respectively. The research sheds new lights on not only analytical methods of complex theory but also practical application.
doi_str_mv 10.1007/s11227-022-04544-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2721334360</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2721334360</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-698c8f5026a7890939dd074d0ae21c76eb6d1b191670bc7bb55358594c976e4a3</originalsourceid><addsrcrecordid>eNp9kEtLxDAQx4MouK5-AU8Bz9HJo03jTRZfIHrRc0jTdO1um6xJFtdvb7WKN08zw_wf8EPolMI5BZAXiVLGJAHGCIhCCLLbQzNaSD6eldhHM1AMSFUIdoiOUloBgOCSz9DqMTSOdMMmxGy8dTgav-78EnceJ2t6R9roHPYuv4e4TpfY_O54cDl2FkeXNsEnh4cxqcfGN7jLCafQb3MXPDb9MsQuvw7H6KA1fXInP3OOXm6unxd35OHp9n5x9UAsEyqTUlW2agtgpZGVAsVV04AUDRjHqJWlq8uG1lTRUkJtZV0XBS-qQgmrxqcwfI7OptxNDG9bl7JehW30Y6VmklHOBS9hVLFJZWNIKbpWb2I3mPihKegvpnpiqkem-pup3o0mPpnSKPZLF_-i_3F9ArOWexc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2721334360</pqid></control><display><type>article</type><title>Node-importance ranking in scale-free networks: a network metric response model and its solution algorithm</title><source>Springer Nature - Complete Springer Journals</source><creator>Yu, Anqi ; Wang, Nuo</creator><creatorcontrib>Yu, Anqi ; Wang, Nuo</creatorcontrib><description>A new node-importance ranking model and its solution algorithm for scale-free networks are proposed. The general idea is as follows: first, we construct a node-importance ranking model targeting the fastest network collapse, which is identified by the maximal variation in integrated network metrics. We then combine the genetic algorithm and variable neighbourhood search and improve it in initial population generation, neighbourhood search, and fitness evaluation. Finally, we investigate the BA network and container-shipping network. By comparison, the proposed method demonstrates a 7.9 and 16.8% improvement in effectiveness over betweenness and degree, respectively, in the BA network. The above indexes come to 15.1 and 41.3% in the container-shipping network. Moreover, the proposed algorithm reveals an 8.1 and 6.3% improvement in effectiveness, and a 63.7 and 67.1% reduction in computation time in the two cases, respectively. The research sheds new lights on not only analytical methods of complex theory but also practical application.</description><identifier>ISSN: 0920-8542</identifier><identifier>EISSN: 1573-0484</identifier><identifier>DOI: 10.1007/s11227-022-04544-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Compilers ; Computer Science ; Containers ; Effectiveness ; Genetic algorithms ; Interpreters ; Mathematical analysis ; Nodes ; Processor Architectures ; Programming Languages ; Ranking ; Shipping</subject><ispartof>The Journal of supercomputing, 2022-10, Vol.78 (15), p.17450-17469</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-698c8f5026a7890939dd074d0ae21c76eb6d1b191670bc7bb55358594c976e4a3</citedby><cites>FETCH-LOGICAL-c249t-698c8f5026a7890939dd074d0ae21c76eb6d1b191670bc7bb55358594c976e4a3</cites><orcidid>0000-0002-7232-3816</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11227-022-04544-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11227-022-04544-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27907,27908,41471,42540,51302</link.rule.ids></links><search><creatorcontrib>Yu, Anqi</creatorcontrib><creatorcontrib>Wang, Nuo</creatorcontrib><title>Node-importance ranking in scale-free networks: a network metric response model and its solution algorithm</title><title>The Journal of supercomputing</title><addtitle>J Supercomput</addtitle><description>A new node-importance ranking model and its solution algorithm for scale-free networks are proposed. The general idea is as follows: first, we construct a node-importance ranking model targeting the fastest network collapse, which is identified by the maximal variation in integrated network metrics. We then combine the genetic algorithm and variable neighbourhood search and improve it in initial population generation, neighbourhood search, and fitness evaluation. Finally, we investigate the BA network and container-shipping network. By comparison, the proposed method demonstrates a 7.9 and 16.8% improvement in effectiveness over betweenness and degree, respectively, in the BA network. The above indexes come to 15.1 and 41.3% in the container-shipping network. Moreover, the proposed algorithm reveals an 8.1 and 6.3% improvement in effectiveness, and a 63.7 and 67.1% reduction in computation time in the two cases, respectively. The research sheds new lights on not only analytical methods of complex theory but also practical application.</description><subject>Algorithms</subject><subject>Compilers</subject><subject>Computer Science</subject><subject>Containers</subject><subject>Effectiveness</subject><subject>Genetic algorithms</subject><subject>Interpreters</subject><subject>Mathematical analysis</subject><subject>Nodes</subject><subject>Processor Architectures</subject><subject>Programming Languages</subject><subject>Ranking</subject><subject>Shipping</subject><issn>0920-8542</issn><issn>1573-0484</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAQx4MouK5-AU8Bz9HJo03jTRZfIHrRc0jTdO1um6xJFtdvb7WKN08zw_wf8EPolMI5BZAXiVLGJAHGCIhCCLLbQzNaSD6eldhHM1AMSFUIdoiOUloBgOCSz9DqMTSOdMMmxGy8dTgav-78EnceJ2t6R9roHPYuv4e4TpfY_O54cDl2FkeXNsEnh4cxqcfGN7jLCafQb3MXPDb9MsQuvw7H6KA1fXInP3OOXm6unxd35OHp9n5x9UAsEyqTUlW2agtgpZGVAsVV04AUDRjHqJWlq8uG1lTRUkJtZV0XBS-qQgmrxqcwfI7OptxNDG9bl7JehW30Y6VmklHOBS9hVLFJZWNIKbpWb2I3mPihKegvpnpiqkem-pup3o0mPpnSKPZLF_-i_3F9ArOWexc</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Yu, Anqi</creator><creator>Wang, Nuo</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-7232-3816</orcidid></search><sort><creationdate>20221001</creationdate><title>Node-importance ranking in scale-free networks: a network metric response model and its solution algorithm</title><author>Yu, Anqi ; Wang, Nuo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-698c8f5026a7890939dd074d0ae21c76eb6d1b191670bc7bb55358594c976e4a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Compilers</topic><topic>Computer Science</topic><topic>Containers</topic><topic>Effectiveness</topic><topic>Genetic algorithms</topic><topic>Interpreters</topic><topic>Mathematical analysis</topic><topic>Nodes</topic><topic>Processor Architectures</topic><topic>Programming Languages</topic><topic>Ranking</topic><topic>Shipping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Anqi</creatorcontrib><creatorcontrib>Wang, Nuo</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of supercomputing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Anqi</au><au>Wang, Nuo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Node-importance ranking in scale-free networks: a network metric response model and its solution algorithm</atitle><jtitle>The Journal of supercomputing</jtitle><stitle>J Supercomput</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>78</volume><issue>15</issue><spage>17450</spage><epage>17469</epage><pages>17450-17469</pages><issn>0920-8542</issn><eissn>1573-0484</eissn><abstract>A new node-importance ranking model and its solution algorithm for scale-free networks are proposed. The general idea is as follows: first, we construct a node-importance ranking model targeting the fastest network collapse, which is identified by the maximal variation in integrated network metrics. We then combine the genetic algorithm and variable neighbourhood search and improve it in initial population generation, neighbourhood search, and fitness evaluation. Finally, we investigate the BA network and container-shipping network. By comparison, the proposed method demonstrates a 7.9 and 16.8% improvement in effectiveness over betweenness and degree, respectively, in the BA network. The above indexes come to 15.1 and 41.3% in the container-shipping network. Moreover, the proposed algorithm reveals an 8.1 and 6.3% improvement in effectiveness, and a 63.7 and 67.1% reduction in computation time in the two cases, respectively. The research sheds new lights on not only analytical methods of complex theory but also practical application.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11227-022-04544-x</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-7232-3816</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0920-8542
ispartof The Journal of supercomputing, 2022-10, Vol.78 (15), p.17450-17469
issn 0920-8542
1573-0484
language eng
recordid cdi_proquest_journals_2721334360
source Springer Nature - Complete Springer Journals
subjects Algorithms
Compilers
Computer Science
Containers
Effectiveness
Genetic algorithms
Interpreters
Mathematical analysis
Nodes
Processor Architectures
Programming Languages
Ranking
Shipping
title Node-importance ranking in scale-free networks: a network metric response model and its solution algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T14%3A11%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Node-importance%20ranking%20in%20scale-free%20networks:%20a%20network%20metric%20response%20model%20and%20its%20solution%20algorithm&rft.jtitle=The%20Journal%20of%20supercomputing&rft.au=Yu,%20Anqi&rft.date=2022-10-01&rft.volume=78&rft.issue=15&rft.spage=17450&rft.epage=17469&rft.pages=17450-17469&rft.issn=0920-8542&rft.eissn=1573-0484&rft_id=info:doi/10.1007/s11227-022-04544-x&rft_dat=%3Cproquest_cross%3E2721334360%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2721334360&rft_id=info:pmid/&rfr_iscdi=true