Runtime and energy constrained work scheduling for heterogeneous systems

Heterogeneous hardware systems consisting of CPUs and different types of accelerators are wide-spread nowadays for large supercomputers as well as smaller cluster systems in the field of high-performance computing (HPC). A fundamental problem for such systems is the distribution of the workload of d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of supercomputing 2022-10, Vol.78 (15), p.17150-17177
Hauptverfasser: Raca, Valon, Umboh, Seeun William, Mehofer, Eduard, Scholz, Bernhard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 17177
container_issue 15
container_start_page 17150
container_title The Journal of supercomputing
container_volume 78
creator Raca, Valon
Umboh, Seeun William
Mehofer, Eduard
Scholz, Bernhard
description Heterogeneous hardware systems consisting of CPUs and different types of accelerators are wide-spread nowadays for large supercomputers as well as smaller cluster systems in the field of high-performance computing (HPC). A fundamental problem for such systems is the distribution of the workload of data-parallel HPC applications onto heterogeneous compute devices. The distribution of the workload tries to achieve (1) a well-balanced and runtime efficient program execution and (2) energy efficiency. However, typically both goals are contradicting objectives resulting in a challenging bi-criteria optimization problem. In this paper, we present an efficient scheduling algorithm that assigns work bundles to heterogeneous compute devices and determines an optimal solution for minimizing the makespan of a task under a given energy constraint. Work bundles are equal-sized, medium-grained data chunks that are obtained by partitioning the workload of data-parallel applications. Energy consumption and execution time for processing a single work bundle varies depending on the respective compute device and is essential for beneficial scheduling strategies. We formulate our optimization problem as an Integer Linear Program and devise an efficient bisection algorithm, which computes optimal solutions with logarithmic-time complexity. Experiments emphasize the efficiency of our algorithm. Further we investigate the two-dimensional optimization space and sketch an algorithm for Strong Pareto Optimal solutions.
doi_str_mv 10.1007/s11227-022-04556-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2721334336</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2721334336</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-4f6bdfb7a2240acef0d1095ca55143402a8c62a8222f2dc5d9b44079e22555453</originalsourceid><addsrcrecordid>eNp9kMFKAzEQhoMoWKsv4CngeXUySTbdoxS1QkEQPYc0m91ubZOa7CJ9e1NX8OZlhoHv_wc-Qq4Z3DIAdZcYQ1QFIBYgpCwLdUImTCqez5k4JROoEIqZFHhOLlLaAIDgik_I4nXwfbdz1PiaOu9ie6A2-NRH03lX068QP2iya1cP2863tAmRrl3vYmgzHYZE0yH1bpcuyVljtsld_e4peX98eJsviuXL0_P8fllYzqq-EE25qpuVMogCjHUN1AwqaY2UTHABaGa2zAMRG6ytrKuVEKAqhyilFJJPyc3Yu4_hc3Cp15swRJ9falTIOBecl5nCkbIxpBRdo_ex25l40Az00ZgejelsTP8Y0yqH-BhKGfati3_V_6S-AaJebl8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2721334336</pqid></control><display><type>article</type><title>Runtime and energy constrained work scheduling for heterogeneous systems</title><source>SpringerLink Journals</source><creator>Raca, Valon ; Umboh, Seeun William ; Mehofer, Eduard ; Scholz, Bernhard</creator><creatorcontrib>Raca, Valon ; Umboh, Seeun William ; Mehofer, Eduard ; Scholz, Bernhard</creatorcontrib><description>Heterogeneous hardware systems consisting of CPUs and different types of accelerators are wide-spread nowadays for large supercomputers as well as smaller cluster systems in the field of high-performance computing (HPC). A fundamental problem for such systems is the distribution of the workload of data-parallel HPC applications onto heterogeneous compute devices. The distribution of the workload tries to achieve (1) a well-balanced and runtime efficient program execution and (2) energy efficiency. However, typically both goals are contradicting objectives resulting in a challenging bi-criteria optimization problem. In this paper, we present an efficient scheduling algorithm that assigns work bundles to heterogeneous compute devices and determines an optimal solution for minimizing the makespan of a task under a given energy constraint. Work bundles are equal-sized, medium-grained data chunks that are obtained by partitioning the workload of data-parallel applications. Energy consumption and execution time for processing a single work bundle varies depending on the respective compute device and is essential for beneficial scheduling strategies. We formulate our optimization problem as an Integer Linear Program and devise an efficient bisection algorithm, which computes optimal solutions with logarithmic-time complexity. Experiments emphasize the efficiency of our algorithm. Further we investigate the two-dimensional optimization space and sketch an algorithm for Strong Pareto Optimal solutions.</description><identifier>ISSN: 0920-8542</identifier><identifier>EISSN: 1573-0484</identifier><identifier>DOI: 10.1007/s11227-022-04556-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Compilers ; Computer Science ; Constraints ; Energy consumption ; High performance computing ; Integer programming ; Interpreters ; Optimization ; Processor Architectures ; Programming Languages ; Run time (computers) ; Scheduling ; Supercomputers ; Workload ; Workloads</subject><ispartof>The Journal of supercomputing, 2022-10, Vol.78 (15), p.17150-17177</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-4f6bdfb7a2240acef0d1095ca55143402a8c62a8222f2dc5d9b44079e22555453</citedby><cites>FETCH-LOGICAL-c319t-4f6bdfb7a2240acef0d1095ca55143402a8c62a8222f2dc5d9b44079e22555453</cites><orcidid>0000-0001-5948-049X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11227-022-04556-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11227-022-04556-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Raca, Valon</creatorcontrib><creatorcontrib>Umboh, Seeun William</creatorcontrib><creatorcontrib>Mehofer, Eduard</creatorcontrib><creatorcontrib>Scholz, Bernhard</creatorcontrib><title>Runtime and energy constrained work scheduling for heterogeneous systems</title><title>The Journal of supercomputing</title><addtitle>J Supercomput</addtitle><description>Heterogeneous hardware systems consisting of CPUs and different types of accelerators are wide-spread nowadays for large supercomputers as well as smaller cluster systems in the field of high-performance computing (HPC). A fundamental problem for such systems is the distribution of the workload of data-parallel HPC applications onto heterogeneous compute devices. The distribution of the workload tries to achieve (1) a well-balanced and runtime efficient program execution and (2) energy efficiency. However, typically both goals are contradicting objectives resulting in a challenging bi-criteria optimization problem. In this paper, we present an efficient scheduling algorithm that assigns work bundles to heterogeneous compute devices and determines an optimal solution for minimizing the makespan of a task under a given energy constraint. Work bundles are equal-sized, medium-grained data chunks that are obtained by partitioning the workload of data-parallel applications. Energy consumption and execution time for processing a single work bundle varies depending on the respective compute device and is essential for beneficial scheduling strategies. We formulate our optimization problem as an Integer Linear Program and devise an efficient bisection algorithm, which computes optimal solutions with logarithmic-time complexity. Experiments emphasize the efficiency of our algorithm. Further we investigate the two-dimensional optimization space and sketch an algorithm for Strong Pareto Optimal solutions.</description><subject>Algorithms</subject><subject>Compilers</subject><subject>Computer Science</subject><subject>Constraints</subject><subject>Energy consumption</subject><subject>High performance computing</subject><subject>Integer programming</subject><subject>Interpreters</subject><subject>Optimization</subject><subject>Processor Architectures</subject><subject>Programming Languages</subject><subject>Run time (computers)</subject><subject>Scheduling</subject><subject>Supercomputers</subject><subject>Workload</subject><subject>Workloads</subject><issn>0920-8542</issn><issn>1573-0484</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKAzEQhoMoWKsv4CngeXUySTbdoxS1QkEQPYc0m91ubZOa7CJ9e1NX8OZlhoHv_wc-Qq4Z3DIAdZcYQ1QFIBYgpCwLdUImTCqez5k4JROoEIqZFHhOLlLaAIDgik_I4nXwfbdz1PiaOu9ie6A2-NRH03lX068QP2iya1cP2863tAmRrl3vYmgzHYZE0yH1bpcuyVljtsld_e4peX98eJsviuXL0_P8fllYzqq-EE25qpuVMogCjHUN1AwqaY2UTHABaGa2zAMRG6ytrKuVEKAqhyilFJJPyc3Yu4_hc3Cp15swRJ9falTIOBecl5nCkbIxpBRdo_ex25l40Az00ZgejelsTP8Y0yqH-BhKGfati3_V_6S-AaJebl8</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Raca, Valon</creator><creator>Umboh, Seeun William</creator><creator>Mehofer, Eduard</creator><creator>Scholz, Bernhard</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5948-049X</orcidid></search><sort><creationdate>20221001</creationdate><title>Runtime and energy constrained work scheduling for heterogeneous systems</title><author>Raca, Valon ; Umboh, Seeun William ; Mehofer, Eduard ; Scholz, Bernhard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-4f6bdfb7a2240acef0d1095ca55143402a8c62a8222f2dc5d9b44079e22555453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Compilers</topic><topic>Computer Science</topic><topic>Constraints</topic><topic>Energy consumption</topic><topic>High performance computing</topic><topic>Integer programming</topic><topic>Interpreters</topic><topic>Optimization</topic><topic>Processor Architectures</topic><topic>Programming Languages</topic><topic>Run time (computers)</topic><topic>Scheduling</topic><topic>Supercomputers</topic><topic>Workload</topic><topic>Workloads</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Raca, Valon</creatorcontrib><creatorcontrib>Umboh, Seeun William</creatorcontrib><creatorcontrib>Mehofer, Eduard</creatorcontrib><creatorcontrib>Scholz, Bernhard</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of supercomputing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Raca, Valon</au><au>Umboh, Seeun William</au><au>Mehofer, Eduard</au><au>Scholz, Bernhard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Runtime and energy constrained work scheduling for heterogeneous systems</atitle><jtitle>The Journal of supercomputing</jtitle><stitle>J Supercomput</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>78</volume><issue>15</issue><spage>17150</spage><epage>17177</epage><pages>17150-17177</pages><issn>0920-8542</issn><eissn>1573-0484</eissn><abstract>Heterogeneous hardware systems consisting of CPUs and different types of accelerators are wide-spread nowadays for large supercomputers as well as smaller cluster systems in the field of high-performance computing (HPC). A fundamental problem for such systems is the distribution of the workload of data-parallel HPC applications onto heterogeneous compute devices. The distribution of the workload tries to achieve (1) a well-balanced and runtime efficient program execution and (2) energy efficiency. However, typically both goals are contradicting objectives resulting in a challenging bi-criteria optimization problem. In this paper, we present an efficient scheduling algorithm that assigns work bundles to heterogeneous compute devices and determines an optimal solution for minimizing the makespan of a task under a given energy constraint. Work bundles are equal-sized, medium-grained data chunks that are obtained by partitioning the workload of data-parallel applications. Energy consumption and execution time for processing a single work bundle varies depending on the respective compute device and is essential for beneficial scheduling strategies. We formulate our optimization problem as an Integer Linear Program and devise an efficient bisection algorithm, which computes optimal solutions with logarithmic-time complexity. Experiments emphasize the efficiency of our algorithm. Further we investigate the two-dimensional optimization space and sketch an algorithm for Strong Pareto Optimal solutions.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11227-022-04556-7</doi><tpages>28</tpages><orcidid>https://orcid.org/0000-0001-5948-049X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0920-8542
ispartof The Journal of supercomputing, 2022-10, Vol.78 (15), p.17150-17177
issn 0920-8542
1573-0484
language eng
recordid cdi_proquest_journals_2721334336
source SpringerLink Journals
subjects Algorithms
Compilers
Computer Science
Constraints
Energy consumption
High performance computing
Integer programming
Interpreters
Optimization
Processor Architectures
Programming Languages
Run time (computers)
Scheduling
Supercomputers
Workload
Workloads
title Runtime and energy constrained work scheduling for heterogeneous systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T06%3A47%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Runtime%20and%20energy%20constrained%20work%20scheduling%20for%20heterogeneous%20systems&rft.jtitle=The%20Journal%20of%20supercomputing&rft.au=Raca,%20Valon&rft.date=2022-10-01&rft.volume=78&rft.issue=15&rft.spage=17150&rft.epage=17177&rft.pages=17150-17177&rft.issn=0920-8542&rft.eissn=1573-0484&rft_id=info:doi/10.1007/s11227-022-04556-7&rft_dat=%3Cproquest_cross%3E2721334336%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2721334336&rft_id=info:pmid/&rfr_iscdi=true