Oxygenation of conducting polymers facilitated by structure‐breaking anions

Conducting polymers are an interesting class of materials that can be tuned to have a range of properties through counterion doping. For most conducting polymers, the insertion of anions (the doping process) leads to the formation of carbocations (positive charge carriers) along the conjugated polym...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of polymer science (2020) 2021-05, Vol.59 (9), p.745-753
Hauptverfasser: Sethumadhavan, Vithyasaahar, Mahjoub, Reza, Zuber, Kamil, Stanford, Nicole, Evans, Drew
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 753
container_issue 9
container_start_page 745
container_title Journal of polymer science (2020)
container_volume 59
creator Sethumadhavan, Vithyasaahar
Mahjoub, Reza
Zuber, Kamil
Stanford, Nicole
Evans, Drew
description Conducting polymers are an interesting class of materials that can be tuned to have a range of properties through counterion doping. For most conducting polymers, the insertion of anions (the doping process) leads to the formation of carbocations (positive charge carriers) along the conjugated polymer backbone. In this research, we report on a scenario that arises where certain (commonly used) anions in water induce oxygenation of the conducting polymers heteroatom. This is in contrast to the widely reported doping process, and the recently reported hydrolysis of conducting polymers. We observe that the transition between these different conducting polymer‐interactions/reactions is well described by the concept of structure‐making and structure‐breaking anions. Poly(3,4‐propylenedioxy thiophene dimethyl) (PProDOT‐Me2), polypyrrole (PPy), and poly(3,4‐ethylenedioxy thiophene) (PEDOT) thin films are exposed to a range of anions in water. Both PProDOT‐Me2 and PPy are susceptible to oxygenation, while in contrast PEDOT is doped, when exposed to structure‐breaking anions. All the polymers show hydrolysis for structure‐making anions. The knowledge of the interaction and/or reaction of conducting polymers with anions in water is not only critical to their application in devices for aqueous environments (i.e., sensing), but also for their processing and fabrication using water.
doi_str_mv 10.1002/pol.20210095
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2721330170</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2721330170</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3821-db8d3abb1de74947be96fd6be49ba065c432bc0afdf4d184fe0f69b2b83ddfa13</originalsourceid><addsrcrecordid>eNp90LtOwzAUBmALgURVuvEAkVhJ8S1OPFYVN6koDDBbvlYpaVzsRJCNR-AZeRJcFRiZzj98-o_OAeAcwTmCEF_tfDvHEKfMiyMwwYzinCLGj_9yAU_BLMYNTJwUjEI2AQ_1-7i2newb32XeZdp3ZtB9062zVDhubYiZk7ppm1721mRqzGIfkhiC_fr4VMHKlz2WXSqIZ-DEyTba2c-cgueb66flXb6qb--Xi1WuSYVRblRliFQKGVtSTktlOXOGKUu5kpAVmhKsNJTOOGpQRZ2FjnGFVUWMcRKRKbg49O6Cfx1s7MXGD6FLKwUuMSIEohImdXlQOvgYg3ViF5qtDKNAUOx_JtKJ4vdniZMDf2taO_5rxWO9WmDOK0S-AccCcao</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2721330170</pqid></control><display><type>article</type><title>Oxygenation of conducting polymers facilitated by structure‐breaking anions</title><source>Wiley Online Library Journals</source><creator>Sethumadhavan, Vithyasaahar ; Mahjoub, Reza ; Zuber, Kamil ; Stanford, Nicole ; Evans, Drew</creator><creatorcontrib>Sethumadhavan, Vithyasaahar ; Mahjoub, Reza ; Zuber, Kamil ; Stanford, Nicole ; Evans, Drew</creatorcontrib><description>Conducting polymers are an interesting class of materials that can be tuned to have a range of properties through counterion doping. For most conducting polymers, the insertion of anions (the doping process) leads to the formation of carbocations (positive charge carriers) along the conjugated polymer backbone. In this research, we report on a scenario that arises where certain (commonly used) anions in water induce oxygenation of the conducting polymers heteroatom. This is in contrast to the widely reported doping process, and the recently reported hydrolysis of conducting polymers. We observe that the transition between these different conducting polymer‐interactions/reactions is well described by the concept of structure‐making and structure‐breaking anions. Poly(3,4‐propylenedioxy thiophene dimethyl) (PProDOT‐Me2), polypyrrole (PPy), and poly(3,4‐ethylenedioxy thiophene) (PEDOT) thin films are exposed to a range of anions in water. Both PProDOT‐Me2 and PPy are susceptible to oxygenation, while in contrast PEDOT is doped, when exposed to structure‐breaking anions. All the polymers show hydrolysis for structure‐making anions. The knowledge of the interaction and/or reaction of conducting polymers with anions in water is not only critical to their application in devices for aqueous environments (i.e., sensing), but also for their processing and fabrication using water.</description><identifier>ISSN: 2642-4150</identifier><identifier>EISSN: 2642-4169</identifier><identifier>DOI: 10.1002/pol.20210095</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>anion binding ; Anions ; Aqueous environments ; Conducting polymers ; crystal orbital Hamilton population ; Current carriers ; Doping ; Hydrolysis ; Oxygenation ; PEDOT ; Polymers ; Polypyrroles ; PProDoT‐Me2 ; pyrrole ; structure‐breaking ; Thin films</subject><ispartof>Journal of polymer science (2020), 2021-05, Vol.59 (9), p.745-753</ispartof><rights>2021 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3821-db8d3abb1de74947be96fd6be49ba065c432bc0afdf4d184fe0f69b2b83ddfa13</citedby><cites>FETCH-LOGICAL-c3821-db8d3abb1de74947be96fd6be49ba065c432bc0afdf4d184fe0f69b2b83ddfa13</cites><orcidid>0000-0002-1525-2249 ; 0000-0002-9292-1223 ; 0000-0002-3298-4249 ; 0000-0003-0579-1983</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpol.20210095$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpol.20210095$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Sethumadhavan, Vithyasaahar</creatorcontrib><creatorcontrib>Mahjoub, Reza</creatorcontrib><creatorcontrib>Zuber, Kamil</creatorcontrib><creatorcontrib>Stanford, Nicole</creatorcontrib><creatorcontrib>Evans, Drew</creatorcontrib><title>Oxygenation of conducting polymers facilitated by structure‐breaking anions</title><title>Journal of polymer science (2020)</title><description>Conducting polymers are an interesting class of materials that can be tuned to have a range of properties through counterion doping. For most conducting polymers, the insertion of anions (the doping process) leads to the formation of carbocations (positive charge carriers) along the conjugated polymer backbone. In this research, we report on a scenario that arises where certain (commonly used) anions in water induce oxygenation of the conducting polymers heteroatom. This is in contrast to the widely reported doping process, and the recently reported hydrolysis of conducting polymers. We observe that the transition between these different conducting polymer‐interactions/reactions is well described by the concept of structure‐making and structure‐breaking anions. Poly(3,4‐propylenedioxy thiophene dimethyl) (PProDOT‐Me2), polypyrrole (PPy), and poly(3,4‐ethylenedioxy thiophene) (PEDOT) thin films are exposed to a range of anions in water. Both PProDOT‐Me2 and PPy are susceptible to oxygenation, while in contrast PEDOT is doped, when exposed to structure‐breaking anions. All the polymers show hydrolysis for structure‐making anions. The knowledge of the interaction and/or reaction of conducting polymers with anions in water is not only critical to their application in devices for aqueous environments (i.e., sensing), but also for their processing and fabrication using water.</description><subject>anion binding</subject><subject>Anions</subject><subject>Aqueous environments</subject><subject>Conducting polymers</subject><subject>crystal orbital Hamilton population</subject><subject>Current carriers</subject><subject>Doping</subject><subject>Hydrolysis</subject><subject>Oxygenation</subject><subject>PEDOT</subject><subject>Polymers</subject><subject>Polypyrroles</subject><subject>PProDoT‐Me2</subject><subject>pyrrole</subject><subject>structure‐breaking</subject><subject>Thin films</subject><issn>2642-4150</issn><issn>2642-4169</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp90LtOwzAUBmALgURVuvEAkVhJ8S1OPFYVN6koDDBbvlYpaVzsRJCNR-AZeRJcFRiZzj98-o_OAeAcwTmCEF_tfDvHEKfMiyMwwYzinCLGj_9yAU_BLMYNTJwUjEI2AQ_1-7i2newb32XeZdp3ZtB9062zVDhubYiZk7ppm1721mRqzGIfkhiC_fr4VMHKlz2WXSqIZ-DEyTba2c-cgueb66flXb6qb--Xi1WuSYVRblRliFQKGVtSTktlOXOGKUu5kpAVmhKsNJTOOGpQRZ2FjnGFVUWMcRKRKbg49O6Cfx1s7MXGD6FLKwUuMSIEohImdXlQOvgYg3ViF5qtDKNAUOx_JtKJ4vdniZMDf2taO_5rxWO9WmDOK0S-AccCcao</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Sethumadhavan, Vithyasaahar</creator><creator>Mahjoub, Reza</creator><creator>Zuber, Kamil</creator><creator>Stanford, Nicole</creator><creator>Evans, Drew</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1525-2249</orcidid><orcidid>https://orcid.org/0000-0002-9292-1223</orcidid><orcidid>https://orcid.org/0000-0002-3298-4249</orcidid><orcidid>https://orcid.org/0000-0003-0579-1983</orcidid></search><sort><creationdate>20210501</creationdate><title>Oxygenation of conducting polymers facilitated by structure‐breaking anions</title><author>Sethumadhavan, Vithyasaahar ; Mahjoub, Reza ; Zuber, Kamil ; Stanford, Nicole ; Evans, Drew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3821-db8d3abb1de74947be96fd6be49ba065c432bc0afdf4d184fe0f69b2b83ddfa13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>anion binding</topic><topic>Anions</topic><topic>Aqueous environments</topic><topic>Conducting polymers</topic><topic>crystal orbital Hamilton population</topic><topic>Current carriers</topic><topic>Doping</topic><topic>Hydrolysis</topic><topic>Oxygenation</topic><topic>PEDOT</topic><topic>Polymers</topic><topic>Polypyrroles</topic><topic>PProDoT‐Me2</topic><topic>pyrrole</topic><topic>structure‐breaking</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sethumadhavan, Vithyasaahar</creatorcontrib><creatorcontrib>Mahjoub, Reza</creatorcontrib><creatorcontrib>Zuber, Kamil</creatorcontrib><creatorcontrib>Stanford, Nicole</creatorcontrib><creatorcontrib>Evans, Drew</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of polymer science (2020)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sethumadhavan, Vithyasaahar</au><au>Mahjoub, Reza</au><au>Zuber, Kamil</au><au>Stanford, Nicole</au><au>Evans, Drew</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oxygenation of conducting polymers facilitated by structure‐breaking anions</atitle><jtitle>Journal of polymer science (2020)</jtitle><date>2021-05-01</date><risdate>2021</risdate><volume>59</volume><issue>9</issue><spage>745</spage><epage>753</epage><pages>745-753</pages><issn>2642-4150</issn><eissn>2642-4169</eissn><abstract>Conducting polymers are an interesting class of materials that can be tuned to have a range of properties through counterion doping. For most conducting polymers, the insertion of anions (the doping process) leads to the formation of carbocations (positive charge carriers) along the conjugated polymer backbone. In this research, we report on a scenario that arises where certain (commonly used) anions in water induce oxygenation of the conducting polymers heteroatom. This is in contrast to the widely reported doping process, and the recently reported hydrolysis of conducting polymers. We observe that the transition between these different conducting polymer‐interactions/reactions is well described by the concept of structure‐making and structure‐breaking anions. Poly(3,4‐propylenedioxy thiophene dimethyl) (PProDOT‐Me2), polypyrrole (PPy), and poly(3,4‐ethylenedioxy thiophene) (PEDOT) thin films are exposed to a range of anions in water. Both PProDOT‐Me2 and PPy are susceptible to oxygenation, while in contrast PEDOT is doped, when exposed to structure‐breaking anions. All the polymers show hydrolysis for structure‐making anions. The knowledge of the interaction and/or reaction of conducting polymers with anions in water is not only critical to their application in devices for aqueous environments (i.e., sensing), but also for their processing and fabrication using water.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/pol.20210095</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-1525-2249</orcidid><orcidid>https://orcid.org/0000-0002-9292-1223</orcidid><orcidid>https://orcid.org/0000-0002-3298-4249</orcidid><orcidid>https://orcid.org/0000-0003-0579-1983</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2642-4150
ispartof Journal of polymer science (2020), 2021-05, Vol.59 (9), p.745-753
issn 2642-4150
2642-4169
language eng
recordid cdi_proquest_journals_2721330170
source Wiley Online Library Journals
subjects anion binding
Anions
Aqueous environments
Conducting polymers
crystal orbital Hamilton population
Current carriers
Doping
Hydrolysis
Oxygenation
PEDOT
Polymers
Polypyrroles
PProDoT‐Me2
pyrrole
structure‐breaking
Thin films
title Oxygenation of conducting polymers facilitated by structure‐breaking anions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T16%3A11%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oxygenation%20of%20conducting%20polymers%20facilitated%20by%20structure%E2%80%90breaking%20anions&rft.jtitle=Journal%20of%20polymer%20science%20(2020)&rft.au=Sethumadhavan,%20Vithyasaahar&rft.date=2021-05-01&rft.volume=59&rft.issue=9&rft.spage=745&rft.epage=753&rft.pages=745-753&rft.issn=2642-4150&rft.eissn=2642-4169&rft_id=info:doi/10.1002/pol.20210095&rft_dat=%3Cproquest_cross%3E2721330170%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2721330170&rft_id=info:pmid/&rfr_iscdi=true