Cost and emissions pathways towards net-zero climate impacts in aviation

Aviation emissions are not on a trajectory consistent with Paris Climate Agreement goals. We evaluate the extent to which fuel pathways—synthetic fuels from biomass, synthetic fuels from green hydrogen and atmospheric CO 2 , and the direct use of green liquid hydrogen—could lead aviation towards net...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature climate change 2022-10, Vol.12 (10), p.956-962
Hauptverfasser: Dray, Lynnette, Schäfer, Andreas W., Grobler, Carla, Falter, Christoph, Allroggen, Florian, Stettler, Marc E. J., Barrett, Steven R. H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 962
container_issue 10
container_start_page 956
container_title Nature climate change
container_volume 12
creator Dray, Lynnette
Schäfer, Andreas W.
Grobler, Carla
Falter, Christoph
Allroggen, Florian
Stettler, Marc E. J.
Barrett, Steven R. H.
description Aviation emissions are not on a trajectory consistent with Paris Climate Agreement goals. We evaluate the extent to which fuel pathways—synthetic fuels from biomass, synthetic fuels from green hydrogen and atmospheric CO 2 , and the direct use of green liquid hydrogen—could lead aviation towards net-zero climate impacts. Together with continued efficiency gains and contrail avoidance, but without offsets, such an energy transition could reduce lifecycle aviation CO 2 emissions by 89–94% compared with year-2019 levels, despite a 2–3-fold growth in demand by 2050. The aviation sector could manage the associated cost increases, with ticket prices rising by no more than 15% compared with a no-intervention baseline leading to demand suppression of less than 14%. These pathways will require discounted investments on the order of US$0.5–2.1 trillion over a 30 yr period. However, our pathways reduce aviation CO 2 -equivalent emissions by only 46–69%; more action is required to mitigate non-CO 2 impacts. Decarbonization of the aviation sector is difficult due to increasing demand and the current lack of scalable mitigation technologies. This Analysis examines pathways towards a net-zero aviation system with improved fuel and aircraft technologies, efficiency gains and contrail avoidance.
doi_str_mv 10.1038/s41558-022-01485-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2721085207</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2721085207</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-6889022bea9e85bcc7c99a7c59b86c21e7771700ab5301959ca9118715ac6333</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWGq_gKeA52j-bDbJUYpaoeClB28hm6a6pbtZM6mlfnqjK3pzLjMM7zfzeAhdMnrNqNA3UDEpNaGcE8oqLUl1giZMlVWtjD79nfXzOZoBbGkpxWpRmwlazCNk7Po1Dl0L0MYe8ODy68EdAed4cGkNuA-ZfIQUsd-1ncsBt93gfAbc9ti9ty4X7AKdbdwOwuynT9Hq_m41X5Dl08Pj_HZJvKhFJrXWphhtgjNBy8Z75Y1xykvT6NpzFpRSTFHqGikoM9J4ZxjTiknnayHEFF2NZ4cU3_YBst3GferLR8sVZ1RLTlVR8VHlUwRIYWOHVJyno2XUfmVmx8xssWK_M7NVgcQIQRH3LyH9nf6H-gS-O245</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2721085207</pqid></control><display><type>article</type><title>Cost and emissions pathways towards net-zero climate impacts in aviation</title><source>SpringerLink Journals</source><source>Nature</source><creator>Dray, Lynnette ; Schäfer, Andreas W. ; Grobler, Carla ; Falter, Christoph ; Allroggen, Florian ; Stettler, Marc E. J. ; Barrett, Steven R. H.</creator><creatorcontrib>Dray, Lynnette ; Schäfer, Andreas W. ; Grobler, Carla ; Falter, Christoph ; Allroggen, Florian ; Stettler, Marc E. J. ; Barrett, Steven R. H.</creatorcontrib><description>Aviation emissions are not on a trajectory consistent with Paris Climate Agreement goals. We evaluate the extent to which fuel pathways—synthetic fuels from biomass, synthetic fuels from green hydrogen and atmospheric CO 2 , and the direct use of green liquid hydrogen—could lead aviation towards net-zero climate impacts. Together with continued efficiency gains and contrail avoidance, but without offsets, such an energy transition could reduce lifecycle aviation CO 2 emissions by 89–94% compared with year-2019 levels, despite a 2–3-fold growth in demand by 2050. The aviation sector could manage the associated cost increases, with ticket prices rising by no more than 15% compared with a no-intervention baseline leading to demand suppression of less than 14%. These pathways will require discounted investments on the order of US$0.5–2.1 trillion over a 30 yr period. However, our pathways reduce aviation CO 2 -equivalent emissions by only 46–69%; more action is required to mitigate non-CO 2 impacts. Decarbonization of the aviation sector is difficult due to increasing demand and the current lack of scalable mitigation technologies. This Analysis examines pathways towards a net-zero aviation system with improved fuel and aircraft technologies, efficiency gains and contrail avoidance.</description><identifier>ISSN: 1758-678X</identifier><identifier>EISSN: 1758-6798</identifier><identifier>DOI: 10.1038/s41558-022-01485-4</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/4077 ; 704/106/694 ; Analysis ; Aviation ; Avoidance ; Carbon dioxide ; Carbon dioxide emissions ; Climate ; Climate Change ; Climate Change/Climate Change Impacts ; Contrails ; Decarbonization ; Demand ; Earth and Environmental Science ; Emissions ; Energy transition ; Environment ; Environmental Law/Policy/Ecojustice ; Green hydrogen ; Hydrogen ; Liquid hydrogen ; Mitigation ; Net zero ; Paris Agreement ; Synthetic fuels</subject><ispartof>Nature climate change, 2022-10, Vol.12 (10), p.956-962</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2022 Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>Copyright Nature Publishing Group Oct 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-6889022bea9e85bcc7c99a7c59b86c21e7771700ab5301959ca9118715ac6333</citedby><cites>FETCH-LOGICAL-c363t-6889022bea9e85bcc7c99a7c59b86c21e7771700ab5301959ca9118715ac6333</cites><orcidid>0000-0002-5087-027X ; 0000-0002-8860-7100 ; 0000-0003-3331-1246 ; 0000-0002-4642-9545 ; 0000-0002-0301-6644 ; 0000-0002-2066-9380</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41558-022-01485-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41558-022-01485-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Dray, Lynnette</creatorcontrib><creatorcontrib>Schäfer, Andreas W.</creatorcontrib><creatorcontrib>Grobler, Carla</creatorcontrib><creatorcontrib>Falter, Christoph</creatorcontrib><creatorcontrib>Allroggen, Florian</creatorcontrib><creatorcontrib>Stettler, Marc E. J.</creatorcontrib><creatorcontrib>Barrett, Steven R. H.</creatorcontrib><title>Cost and emissions pathways towards net-zero climate impacts in aviation</title><title>Nature climate change</title><addtitle>Nat. Clim. Chang</addtitle><description>Aviation emissions are not on a trajectory consistent with Paris Climate Agreement goals. We evaluate the extent to which fuel pathways—synthetic fuels from biomass, synthetic fuels from green hydrogen and atmospheric CO 2 , and the direct use of green liquid hydrogen—could lead aviation towards net-zero climate impacts. Together with continued efficiency gains and contrail avoidance, but without offsets, such an energy transition could reduce lifecycle aviation CO 2 emissions by 89–94% compared with year-2019 levels, despite a 2–3-fold growth in demand by 2050. The aviation sector could manage the associated cost increases, with ticket prices rising by no more than 15% compared with a no-intervention baseline leading to demand suppression of less than 14%. These pathways will require discounted investments on the order of US$0.5–2.1 trillion over a 30 yr period. However, our pathways reduce aviation CO 2 -equivalent emissions by only 46–69%; more action is required to mitigate non-CO 2 impacts. Decarbonization of the aviation sector is difficult due to increasing demand and the current lack of scalable mitigation technologies. This Analysis examines pathways towards a net-zero aviation system with improved fuel and aircraft technologies, efficiency gains and contrail avoidance.</description><subject>639/4077</subject><subject>704/106/694</subject><subject>Analysis</subject><subject>Aviation</subject><subject>Avoidance</subject><subject>Carbon dioxide</subject><subject>Carbon dioxide emissions</subject><subject>Climate</subject><subject>Climate Change</subject><subject>Climate Change/Climate Change Impacts</subject><subject>Contrails</subject><subject>Decarbonization</subject><subject>Demand</subject><subject>Earth and Environmental Science</subject><subject>Emissions</subject><subject>Energy transition</subject><subject>Environment</subject><subject>Environmental Law/Policy/Ecojustice</subject><subject>Green hydrogen</subject><subject>Hydrogen</subject><subject>Liquid hydrogen</subject><subject>Mitigation</subject><subject>Net zero</subject><subject>Paris Agreement</subject><subject>Synthetic fuels</subject><issn>1758-678X</issn><issn>1758-6798</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kE9LAzEQxYMoWGq_gKeA52j-bDbJUYpaoeClB28hm6a6pbtZM6mlfnqjK3pzLjMM7zfzeAhdMnrNqNA3UDEpNaGcE8oqLUl1giZMlVWtjD79nfXzOZoBbGkpxWpRmwlazCNk7Po1Dl0L0MYe8ODy68EdAed4cGkNuA-ZfIQUsd-1ncsBt93gfAbc9ti9ty4X7AKdbdwOwuynT9Hq_m41X5Dl08Pj_HZJvKhFJrXWphhtgjNBy8Z75Y1xykvT6NpzFpRSTFHqGikoM9J4ZxjTiknnayHEFF2NZ4cU3_YBst3GferLR8sVZ1RLTlVR8VHlUwRIYWOHVJyno2XUfmVmx8xssWK_M7NVgcQIQRH3LyH9nf6H-gS-O245</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Dray, Lynnette</creator><creator>Schäfer, Andreas W.</creator><creator>Grobler, Carla</creator><creator>Falter, Christoph</creator><creator>Allroggen, Florian</creator><creator>Stettler, Marc E. J.</creator><creator>Barrett, Steven R. H.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7TG</scope><scope>7TN</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>H97</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M2P</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-5087-027X</orcidid><orcidid>https://orcid.org/0000-0002-8860-7100</orcidid><orcidid>https://orcid.org/0000-0003-3331-1246</orcidid><orcidid>https://orcid.org/0000-0002-4642-9545</orcidid><orcidid>https://orcid.org/0000-0002-0301-6644</orcidid><orcidid>https://orcid.org/0000-0002-2066-9380</orcidid></search><sort><creationdate>20221001</creationdate><title>Cost and emissions pathways towards net-zero climate impacts in aviation</title><author>Dray, Lynnette ; Schäfer, Andreas W. ; Grobler, Carla ; Falter, Christoph ; Allroggen, Florian ; Stettler, Marc E. J. ; Barrett, Steven R. H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-6889022bea9e85bcc7c99a7c59b86c21e7771700ab5301959ca9118715ac6333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>639/4077</topic><topic>704/106/694</topic><topic>Analysis</topic><topic>Aviation</topic><topic>Avoidance</topic><topic>Carbon dioxide</topic><topic>Carbon dioxide emissions</topic><topic>Climate</topic><topic>Climate Change</topic><topic>Climate Change/Climate Change Impacts</topic><topic>Contrails</topic><topic>Decarbonization</topic><topic>Demand</topic><topic>Earth and Environmental Science</topic><topic>Emissions</topic><topic>Energy transition</topic><topic>Environment</topic><topic>Environmental Law/Policy/Ecojustice</topic><topic>Green hydrogen</topic><topic>Hydrogen</topic><topic>Liquid hydrogen</topic><topic>Mitigation</topic><topic>Net zero</topic><topic>Paris Agreement</topic><topic>Synthetic fuels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dray, Lynnette</creatorcontrib><creatorcontrib>Schäfer, Andreas W.</creatorcontrib><creatorcontrib>Grobler, Carla</creatorcontrib><creatorcontrib>Falter, Christoph</creatorcontrib><creatorcontrib>Allroggen, Florian</creatorcontrib><creatorcontrib>Stettler, Marc E. J.</creatorcontrib><creatorcontrib>Barrett, Steven R. H.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Nature climate change</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dray, Lynnette</au><au>Schäfer, Andreas W.</au><au>Grobler, Carla</au><au>Falter, Christoph</au><au>Allroggen, Florian</au><au>Stettler, Marc E. J.</au><au>Barrett, Steven R. H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cost and emissions pathways towards net-zero climate impacts in aviation</atitle><jtitle>Nature climate change</jtitle><stitle>Nat. Clim. Chang</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>12</volume><issue>10</issue><spage>956</spage><epage>962</epage><pages>956-962</pages><issn>1758-678X</issn><eissn>1758-6798</eissn><abstract>Aviation emissions are not on a trajectory consistent with Paris Climate Agreement goals. We evaluate the extent to which fuel pathways—synthetic fuels from biomass, synthetic fuels from green hydrogen and atmospheric CO 2 , and the direct use of green liquid hydrogen—could lead aviation towards net-zero climate impacts. Together with continued efficiency gains and contrail avoidance, but without offsets, such an energy transition could reduce lifecycle aviation CO 2 emissions by 89–94% compared with year-2019 levels, despite a 2–3-fold growth in demand by 2050. The aviation sector could manage the associated cost increases, with ticket prices rising by no more than 15% compared with a no-intervention baseline leading to demand suppression of less than 14%. These pathways will require discounted investments on the order of US$0.5–2.1 trillion over a 30 yr period. However, our pathways reduce aviation CO 2 -equivalent emissions by only 46–69%; more action is required to mitigate non-CO 2 impacts. Decarbonization of the aviation sector is difficult due to increasing demand and the current lack of scalable mitigation technologies. This Analysis examines pathways towards a net-zero aviation system with improved fuel and aircraft technologies, efficiency gains and contrail avoidance.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41558-022-01485-4</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-5087-027X</orcidid><orcidid>https://orcid.org/0000-0002-8860-7100</orcidid><orcidid>https://orcid.org/0000-0003-3331-1246</orcidid><orcidid>https://orcid.org/0000-0002-4642-9545</orcidid><orcidid>https://orcid.org/0000-0002-0301-6644</orcidid><orcidid>https://orcid.org/0000-0002-2066-9380</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1758-678X
ispartof Nature climate change, 2022-10, Vol.12 (10), p.956-962
issn 1758-678X
1758-6798
language eng
recordid cdi_proquest_journals_2721085207
source SpringerLink Journals; Nature
subjects 639/4077
704/106/694
Analysis
Aviation
Avoidance
Carbon dioxide
Carbon dioxide emissions
Climate
Climate Change
Climate Change/Climate Change Impacts
Contrails
Decarbonization
Demand
Earth and Environmental Science
Emissions
Energy transition
Environment
Environmental Law/Policy/Ecojustice
Green hydrogen
Hydrogen
Liquid hydrogen
Mitigation
Net zero
Paris Agreement
Synthetic fuels
title Cost and emissions pathways towards net-zero climate impacts in aviation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T08%3A06%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cost%20and%20emissions%20pathways%20towards%20net-zero%20climate%20impacts%20in%20aviation&rft.jtitle=Nature%20climate%20change&rft.au=Dray,%20Lynnette&rft.date=2022-10-01&rft.volume=12&rft.issue=10&rft.spage=956&rft.epage=962&rft.pages=956-962&rft.issn=1758-678X&rft.eissn=1758-6798&rft_id=info:doi/10.1038/s41558-022-01485-4&rft_dat=%3Cproquest_cross%3E2721085207%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2721085207&rft_id=info:pmid/&rfr_iscdi=true