Enumeration of Random Walk Positions in \(L_1\)-norm ball in \(\mathbb{Z}^d\)
In this paper, we mainly concerned about deriving the general formula to count the possible positions of \(n\) step random walk in \(\mathbb{Z}^d\) with unit length in each step, which we denoted as \(|P_n^{d}|\). For our results, we firstly propose a recurrence relation of the counting formula: \(|...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-10 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we mainly concerned about deriving the general formula to count the possible positions of \(n\) step random walk in \(\mathbb{Z}^d\) with unit length in each step, which we denoted as \(|P_n^{d}|\). For our results, we firstly propose a recurrence relation of the counting formula: \(|P_n^{d+1}| = |P_n^d| + 2\sum_{k=0}^{n-1} |P_k^d|\). Next, we propose two methods in deriving the explicit formula of \(|P_n^{d}|\) using generating functions and Faulhaber's formula. Finally, we reached our main theorem in the matrix representation of our formula. |
---|---|
ISSN: | 2331-8422 |