Enumeration of Random Walk Positions in \(L_1\)-norm ball in \(\mathbb{Z}^d\)

In this paper, we mainly concerned about deriving the general formula to count the possible positions of \(n\) step random walk in \(\mathbb{Z}^d\) with unit length in each step, which we denoted as \(|P_n^{d}|\). For our results, we firstly propose a recurrence relation of the counting formula: \(|...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-10
Hauptverfasser: Shi, Luchen, McCance, Will, Zeng, Hongjie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we mainly concerned about deriving the general formula to count the possible positions of \(n\) step random walk in \(\mathbb{Z}^d\) with unit length in each step, which we denoted as \(|P_n^{d}|\). For our results, we firstly propose a recurrence relation of the counting formula: \(|P_n^{d+1}| = |P_n^d| + 2\sum_{k=0}^{n-1} |P_k^d|\). Next, we propose two methods in deriving the explicit formula of \(|P_n^{d}|\) using generating functions and Faulhaber's formula. Finally, we reached our main theorem in the matrix representation of our formula.
ISSN:2331-8422