Tracking control design for periodic piecewise polynomial systems with multiple disturbances
The present study examines the state tracking problem of periodic piecewise polynomial systems subject to multiple disturbances and actuator faults. Specifically, the fundamental period is partitioned into several subintervals and the piecewise matrix polynomial functions can be put together to appr...
Gespeichert in:
Veröffentlicht in: | International journal of robust and nonlinear control 2022-11, Vol.32 (16), p.8965-8980 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8980 |
---|---|
container_issue | 16 |
container_start_page | 8965 |
container_title | International journal of robust and nonlinear control |
container_volume | 32 |
creator | Rathinasamy, Sakthivel Narayanan, Aravinth Kwon, Ohmin |
description | The present study examines the state tracking problem of periodic piecewise polynomial systems subject to multiple disturbances and actuator faults. Specifically, the fundamental period is partitioned into several subintervals and the piecewise matrix polynomial functions can be put together to approximate the dynamics over each period, which are characterized by Bernstein polynomials. Moreover, the system dynamics contains both matched and mismatched disturbances, wherein the matched disturbance is unknown and resulted from some exogenous system, and mismatched case is norm‐bounded. The control law is configured by integrating the output of the disturbance observer with state‐feedback reliable control law. Particularly, a disturbance observer is designed to estimate the disturbance caused by an exogenous system. Besides, by considering time‐varying polynomial Lyapunov function and making use of Bernstein polynomial approach, a set of sufficient conditions is derived which are expressed in terms of linear matrix inequalities. Further, by virtue of MATLAB software the desired controller and observer gain matrices can be computed. In conclusion, the potential and significance of the theoretical findings are confirmed by presenting a numerical example with simulation results. |
doi_str_mv | 10.1002/rnc.6316 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2721070010</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2721070010</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2236-3735ad4ac4c041993338b3722695b5dc06376c6ca1bd90f6800e5edc5c4bb6fa3</originalsourceid><addsrcrecordid>eNp10E1LxDAQBuAgCq6r4E8IePHSdZK06eYoi18gCrLehJBO0zVr29SkZem_t-t69TQD8_AOvIRcMlgwAH4TWlxIweQRmTFQKmFcqOP9nqpkqbg4JWcxbgGmG09n5GMdDH65dkPRt33wNS1tdJuWVj7QzgbnS4e0cxbtzkVLO1-PrW-cqWkcY2-bSHeu_6TNUPeuqy0tXeyHUJgWbTwnJ5Wpo734m3Pyfn-3Xj0mz68PT6vb5wQ5FzIRuchMmRpMEVKmlBBiWYicc6myIisRpMglSjSsKBVUcglgM1tihmlRyMqIObk65HbBfw829nrrh9BOLzXPOYMcgMGkrg8Kg48x2Ep3wTUmjJqB3nenp-70vruJJge6c7Ud_3X67WX1638AKZxxUg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2721070010</pqid></control><display><type>article</type><title>Tracking control design for periodic piecewise polynomial systems with multiple disturbances</title><source>Access via Wiley Online Library</source><creator>Rathinasamy, Sakthivel ; Narayanan, Aravinth ; Kwon, Ohmin</creator><creatorcontrib>Rathinasamy, Sakthivel ; Narayanan, Aravinth ; Kwon, Ohmin</creatorcontrib><description>The present study examines the state tracking problem of periodic piecewise polynomial systems subject to multiple disturbances and actuator faults. Specifically, the fundamental period is partitioned into several subintervals and the piecewise matrix polynomial functions can be put together to approximate the dynamics over each period, which are characterized by Bernstein polynomials. Moreover, the system dynamics contains both matched and mismatched disturbances, wherein the matched disturbance is unknown and resulted from some exogenous system, and mismatched case is norm‐bounded. The control law is configured by integrating the output of the disturbance observer with state‐feedback reliable control law. Particularly, a disturbance observer is designed to estimate the disturbance caused by an exogenous system. Besides, by considering time‐varying polynomial Lyapunov function and making use of Bernstein polynomial approach, a set of sufficient conditions is derived which are expressed in terms of linear matrix inequalities. Further, by virtue of MATLAB software the desired controller and observer gain matrices can be computed. In conclusion, the potential and significance of the theoretical findings are confirmed by presenting a numerical example with simulation results.</description><identifier>ISSN: 1049-8923</identifier><identifier>EISSN: 1099-1239</identifier><identifier>DOI: 10.1002/rnc.6316</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Actuators ; Control theory ; disturbance observer ; Disturbance observers ; Liapunov functions ; Linear matrix inequalities ; Mathematical analysis ; multiple disturbances ; periodic piecewise polynomial systems ; Polynomials ; System dynamics ; Tracking control ; tracking control design ; Tracking problem</subject><ispartof>International journal of robust and nonlinear control, 2022-11, Vol.32 (16), p.8965-8980</ispartof><rights>2022 John Wiley & Sons Ltd.</rights><rights>2022 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2236-3735ad4ac4c041993338b3722695b5dc06376c6ca1bd90f6800e5edc5c4bb6fa3</citedby><cites>FETCH-LOGICAL-c2236-3735ad4ac4c041993338b3722695b5dc06376c6ca1bd90f6800e5edc5c4bb6fa3</cites><orcidid>0000-0002-1717-7668 ; 0000-0002-5528-2709 ; 0000-0002-4777-7912</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Frnc.6316$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Frnc.6316$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Rathinasamy, Sakthivel</creatorcontrib><creatorcontrib>Narayanan, Aravinth</creatorcontrib><creatorcontrib>Kwon, Ohmin</creatorcontrib><title>Tracking control design for periodic piecewise polynomial systems with multiple disturbances</title><title>International journal of robust and nonlinear control</title><description>The present study examines the state tracking problem of periodic piecewise polynomial systems subject to multiple disturbances and actuator faults. Specifically, the fundamental period is partitioned into several subintervals and the piecewise matrix polynomial functions can be put together to approximate the dynamics over each period, which are characterized by Bernstein polynomials. Moreover, the system dynamics contains both matched and mismatched disturbances, wherein the matched disturbance is unknown and resulted from some exogenous system, and mismatched case is norm‐bounded. The control law is configured by integrating the output of the disturbance observer with state‐feedback reliable control law. Particularly, a disturbance observer is designed to estimate the disturbance caused by an exogenous system. Besides, by considering time‐varying polynomial Lyapunov function and making use of Bernstein polynomial approach, a set of sufficient conditions is derived which are expressed in terms of linear matrix inequalities. Further, by virtue of MATLAB software the desired controller and observer gain matrices can be computed. In conclusion, the potential and significance of the theoretical findings are confirmed by presenting a numerical example with simulation results.</description><subject>Actuators</subject><subject>Control theory</subject><subject>disturbance observer</subject><subject>Disturbance observers</subject><subject>Liapunov functions</subject><subject>Linear matrix inequalities</subject><subject>Mathematical analysis</subject><subject>multiple disturbances</subject><subject>periodic piecewise polynomial systems</subject><subject>Polynomials</subject><subject>System dynamics</subject><subject>Tracking control</subject><subject>tracking control design</subject><subject>Tracking problem</subject><issn>1049-8923</issn><issn>1099-1239</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp10E1LxDAQBuAgCq6r4E8IePHSdZK06eYoi18gCrLehJBO0zVr29SkZem_t-t69TQD8_AOvIRcMlgwAH4TWlxIweQRmTFQKmFcqOP9nqpkqbg4JWcxbgGmG09n5GMdDH65dkPRt33wNS1tdJuWVj7QzgbnS4e0cxbtzkVLO1-PrW-cqWkcY2-bSHeu_6TNUPeuqy0tXeyHUJgWbTwnJ5Wpo734m3Pyfn-3Xj0mz68PT6vb5wQ5FzIRuchMmRpMEVKmlBBiWYicc6myIisRpMglSjSsKBVUcglgM1tihmlRyMqIObk65HbBfw829nrrh9BOLzXPOYMcgMGkrg8Kg48x2Ep3wTUmjJqB3nenp-70vruJJge6c7Ud_3X67WX1638AKZxxUg</recordid><startdate>20221110</startdate><enddate>20221110</enddate><creator>Rathinasamy, Sakthivel</creator><creator>Narayanan, Aravinth</creator><creator>Kwon, Ohmin</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-1717-7668</orcidid><orcidid>https://orcid.org/0000-0002-5528-2709</orcidid><orcidid>https://orcid.org/0000-0002-4777-7912</orcidid></search><sort><creationdate>20221110</creationdate><title>Tracking control design for periodic piecewise polynomial systems with multiple disturbances</title><author>Rathinasamy, Sakthivel ; Narayanan, Aravinth ; Kwon, Ohmin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2236-3735ad4ac4c041993338b3722695b5dc06376c6ca1bd90f6800e5edc5c4bb6fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Actuators</topic><topic>Control theory</topic><topic>disturbance observer</topic><topic>Disturbance observers</topic><topic>Liapunov functions</topic><topic>Linear matrix inequalities</topic><topic>Mathematical analysis</topic><topic>multiple disturbances</topic><topic>periodic piecewise polynomial systems</topic><topic>Polynomials</topic><topic>System dynamics</topic><topic>Tracking control</topic><topic>tracking control design</topic><topic>Tracking problem</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rathinasamy, Sakthivel</creatorcontrib><creatorcontrib>Narayanan, Aravinth</creatorcontrib><creatorcontrib>Kwon, Ohmin</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of robust and nonlinear control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rathinasamy, Sakthivel</au><au>Narayanan, Aravinth</au><au>Kwon, Ohmin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tracking control design for periodic piecewise polynomial systems with multiple disturbances</atitle><jtitle>International journal of robust and nonlinear control</jtitle><date>2022-11-10</date><risdate>2022</risdate><volume>32</volume><issue>16</issue><spage>8965</spage><epage>8980</epage><pages>8965-8980</pages><issn>1049-8923</issn><eissn>1099-1239</eissn><abstract>The present study examines the state tracking problem of periodic piecewise polynomial systems subject to multiple disturbances and actuator faults. Specifically, the fundamental period is partitioned into several subintervals and the piecewise matrix polynomial functions can be put together to approximate the dynamics over each period, which are characterized by Bernstein polynomials. Moreover, the system dynamics contains both matched and mismatched disturbances, wherein the matched disturbance is unknown and resulted from some exogenous system, and mismatched case is norm‐bounded. The control law is configured by integrating the output of the disturbance observer with state‐feedback reliable control law. Particularly, a disturbance observer is designed to estimate the disturbance caused by an exogenous system. Besides, by considering time‐varying polynomial Lyapunov function and making use of Bernstein polynomial approach, a set of sufficient conditions is derived which are expressed in terms of linear matrix inequalities. Further, by virtue of MATLAB software the desired controller and observer gain matrices can be computed. In conclusion, the potential and significance of the theoretical findings are confirmed by presenting a numerical example with simulation results.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/rnc.6316</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-1717-7668</orcidid><orcidid>https://orcid.org/0000-0002-5528-2709</orcidid><orcidid>https://orcid.org/0000-0002-4777-7912</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1049-8923 |
ispartof | International journal of robust and nonlinear control, 2022-11, Vol.32 (16), p.8965-8980 |
issn | 1049-8923 1099-1239 |
language | eng |
recordid | cdi_proquest_journals_2721070010 |
source | Access via Wiley Online Library |
subjects | Actuators Control theory disturbance observer Disturbance observers Liapunov functions Linear matrix inequalities Mathematical analysis multiple disturbances periodic piecewise polynomial systems Polynomials System dynamics Tracking control tracking control design Tracking problem |
title | Tracking control design for periodic piecewise polynomial systems with multiple disturbances |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T20%3A36%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tracking%20control%20design%20for%20periodic%20piecewise%20polynomial%20systems%20with%20multiple%20disturbances&rft.jtitle=International%20journal%20of%20robust%20and%20nonlinear%20control&rft.au=Rathinasamy,%20Sakthivel&rft.date=2022-11-10&rft.volume=32&rft.issue=16&rft.spage=8965&rft.epage=8980&rft.pages=8965-8980&rft.issn=1049-8923&rft.eissn=1099-1239&rft_id=info:doi/10.1002/rnc.6316&rft_dat=%3Cproquest_cross%3E2721070010%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2721070010&rft_id=info:pmid/&rfr_iscdi=true |