Tracking control design for periodic piecewise polynomial systems with multiple disturbances

The present study examines the state tracking problem of periodic piecewise polynomial systems subject to multiple disturbances and actuator faults. Specifically, the fundamental period is partitioned into several subintervals and the piecewise matrix polynomial functions can be put together to appr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of robust and nonlinear control 2022-11, Vol.32 (16), p.8965-8980
Hauptverfasser: Rathinasamy, Sakthivel, Narayanan, Aravinth, Kwon, Ohmin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8980
container_issue 16
container_start_page 8965
container_title International journal of robust and nonlinear control
container_volume 32
creator Rathinasamy, Sakthivel
Narayanan, Aravinth
Kwon, Ohmin
description The present study examines the state tracking problem of periodic piecewise polynomial systems subject to multiple disturbances and actuator faults. Specifically, the fundamental period is partitioned into several subintervals and the piecewise matrix polynomial functions can be put together to approximate the dynamics over each period, which are characterized by Bernstein polynomials. Moreover, the system dynamics contains both matched and mismatched disturbances, wherein the matched disturbance is unknown and resulted from some exogenous system, and mismatched case is norm‐bounded. The control law is configured by integrating the output of the disturbance observer with state‐feedback reliable control law. Particularly, a disturbance observer is designed to estimate the disturbance caused by an exogenous system. Besides, by considering time‐varying polynomial Lyapunov function and making use of Bernstein polynomial approach, a set of sufficient conditions is derived which are expressed in terms of linear matrix inequalities. Further, by virtue of MATLAB software the desired controller and observer gain matrices can be computed. In conclusion, the potential and significance of the theoretical findings are confirmed by presenting a numerical example with simulation results.
doi_str_mv 10.1002/rnc.6316
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2721070010</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2721070010</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2236-3735ad4ac4c041993338b3722695b5dc06376c6ca1bd90f6800e5edc5c4bb6fa3</originalsourceid><addsrcrecordid>eNp10E1LxDAQBuAgCq6r4E8IePHSdZK06eYoi18gCrLehJBO0zVr29SkZem_t-t69TQD8_AOvIRcMlgwAH4TWlxIweQRmTFQKmFcqOP9nqpkqbg4JWcxbgGmG09n5GMdDH65dkPRt33wNS1tdJuWVj7QzgbnS4e0cxbtzkVLO1-PrW-cqWkcY2-bSHeu_6TNUPeuqy0tXeyHUJgWbTwnJ5Wpo734m3Pyfn-3Xj0mz68PT6vb5wQ5FzIRuchMmRpMEVKmlBBiWYicc6myIisRpMglSjSsKBVUcglgM1tihmlRyMqIObk65HbBfw829nrrh9BOLzXPOYMcgMGkrg8Kg48x2Ep3wTUmjJqB3nenp-70vruJJge6c7Ud_3X67WX1638AKZxxUg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2721070010</pqid></control><display><type>article</type><title>Tracking control design for periodic piecewise polynomial systems with multiple disturbances</title><source>Access via Wiley Online Library</source><creator>Rathinasamy, Sakthivel ; Narayanan, Aravinth ; Kwon, Ohmin</creator><creatorcontrib>Rathinasamy, Sakthivel ; Narayanan, Aravinth ; Kwon, Ohmin</creatorcontrib><description>The present study examines the state tracking problem of periodic piecewise polynomial systems subject to multiple disturbances and actuator faults. Specifically, the fundamental period is partitioned into several subintervals and the piecewise matrix polynomial functions can be put together to approximate the dynamics over each period, which are characterized by Bernstein polynomials. Moreover, the system dynamics contains both matched and mismatched disturbances, wherein the matched disturbance is unknown and resulted from some exogenous system, and mismatched case is norm‐bounded. The control law is configured by integrating the output of the disturbance observer with state‐feedback reliable control law. Particularly, a disturbance observer is designed to estimate the disturbance caused by an exogenous system. Besides, by considering time‐varying polynomial Lyapunov function and making use of Bernstein polynomial approach, a set of sufficient conditions is derived which are expressed in terms of linear matrix inequalities. Further, by virtue of MATLAB software the desired controller and observer gain matrices can be computed. In conclusion, the potential and significance of the theoretical findings are confirmed by presenting a numerical example with simulation results.</description><identifier>ISSN: 1049-8923</identifier><identifier>EISSN: 1099-1239</identifier><identifier>DOI: 10.1002/rnc.6316</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Actuators ; Control theory ; disturbance observer ; Disturbance observers ; Liapunov functions ; Linear matrix inequalities ; Mathematical analysis ; multiple disturbances ; periodic piecewise polynomial systems ; Polynomials ; System dynamics ; Tracking control ; tracking control design ; Tracking problem</subject><ispartof>International journal of robust and nonlinear control, 2022-11, Vol.32 (16), p.8965-8980</ispartof><rights>2022 John Wiley &amp; Sons Ltd.</rights><rights>2022 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2236-3735ad4ac4c041993338b3722695b5dc06376c6ca1bd90f6800e5edc5c4bb6fa3</citedby><cites>FETCH-LOGICAL-c2236-3735ad4ac4c041993338b3722695b5dc06376c6ca1bd90f6800e5edc5c4bb6fa3</cites><orcidid>0000-0002-1717-7668 ; 0000-0002-5528-2709 ; 0000-0002-4777-7912</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Frnc.6316$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Frnc.6316$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Rathinasamy, Sakthivel</creatorcontrib><creatorcontrib>Narayanan, Aravinth</creatorcontrib><creatorcontrib>Kwon, Ohmin</creatorcontrib><title>Tracking control design for periodic piecewise polynomial systems with multiple disturbances</title><title>International journal of robust and nonlinear control</title><description>The present study examines the state tracking problem of periodic piecewise polynomial systems subject to multiple disturbances and actuator faults. Specifically, the fundamental period is partitioned into several subintervals and the piecewise matrix polynomial functions can be put together to approximate the dynamics over each period, which are characterized by Bernstein polynomials. Moreover, the system dynamics contains both matched and mismatched disturbances, wherein the matched disturbance is unknown and resulted from some exogenous system, and mismatched case is norm‐bounded. The control law is configured by integrating the output of the disturbance observer with state‐feedback reliable control law. Particularly, a disturbance observer is designed to estimate the disturbance caused by an exogenous system. Besides, by considering time‐varying polynomial Lyapunov function and making use of Bernstein polynomial approach, a set of sufficient conditions is derived which are expressed in terms of linear matrix inequalities. Further, by virtue of MATLAB software the desired controller and observer gain matrices can be computed. In conclusion, the potential and significance of the theoretical findings are confirmed by presenting a numerical example with simulation results.</description><subject>Actuators</subject><subject>Control theory</subject><subject>disturbance observer</subject><subject>Disturbance observers</subject><subject>Liapunov functions</subject><subject>Linear matrix inequalities</subject><subject>Mathematical analysis</subject><subject>multiple disturbances</subject><subject>periodic piecewise polynomial systems</subject><subject>Polynomials</subject><subject>System dynamics</subject><subject>Tracking control</subject><subject>tracking control design</subject><subject>Tracking problem</subject><issn>1049-8923</issn><issn>1099-1239</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp10E1LxDAQBuAgCq6r4E8IePHSdZK06eYoi18gCrLehJBO0zVr29SkZem_t-t69TQD8_AOvIRcMlgwAH4TWlxIweQRmTFQKmFcqOP9nqpkqbg4JWcxbgGmG09n5GMdDH65dkPRt33wNS1tdJuWVj7QzgbnS4e0cxbtzkVLO1-PrW-cqWkcY2-bSHeu_6TNUPeuqy0tXeyHUJgWbTwnJ5Wpo734m3Pyfn-3Xj0mz68PT6vb5wQ5FzIRuchMmRpMEVKmlBBiWYicc6myIisRpMglSjSsKBVUcglgM1tihmlRyMqIObk65HbBfw829nrrh9BOLzXPOYMcgMGkrg8Kg48x2Ep3wTUmjJqB3nenp-70vruJJge6c7Ud_3X67WX1638AKZxxUg</recordid><startdate>20221110</startdate><enddate>20221110</enddate><creator>Rathinasamy, Sakthivel</creator><creator>Narayanan, Aravinth</creator><creator>Kwon, Ohmin</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-1717-7668</orcidid><orcidid>https://orcid.org/0000-0002-5528-2709</orcidid><orcidid>https://orcid.org/0000-0002-4777-7912</orcidid></search><sort><creationdate>20221110</creationdate><title>Tracking control design for periodic piecewise polynomial systems with multiple disturbances</title><author>Rathinasamy, Sakthivel ; Narayanan, Aravinth ; Kwon, Ohmin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2236-3735ad4ac4c041993338b3722695b5dc06376c6ca1bd90f6800e5edc5c4bb6fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Actuators</topic><topic>Control theory</topic><topic>disturbance observer</topic><topic>Disturbance observers</topic><topic>Liapunov functions</topic><topic>Linear matrix inequalities</topic><topic>Mathematical analysis</topic><topic>multiple disturbances</topic><topic>periodic piecewise polynomial systems</topic><topic>Polynomials</topic><topic>System dynamics</topic><topic>Tracking control</topic><topic>tracking control design</topic><topic>Tracking problem</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rathinasamy, Sakthivel</creatorcontrib><creatorcontrib>Narayanan, Aravinth</creatorcontrib><creatorcontrib>Kwon, Ohmin</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of robust and nonlinear control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rathinasamy, Sakthivel</au><au>Narayanan, Aravinth</au><au>Kwon, Ohmin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tracking control design for periodic piecewise polynomial systems with multiple disturbances</atitle><jtitle>International journal of robust and nonlinear control</jtitle><date>2022-11-10</date><risdate>2022</risdate><volume>32</volume><issue>16</issue><spage>8965</spage><epage>8980</epage><pages>8965-8980</pages><issn>1049-8923</issn><eissn>1099-1239</eissn><abstract>The present study examines the state tracking problem of periodic piecewise polynomial systems subject to multiple disturbances and actuator faults. Specifically, the fundamental period is partitioned into several subintervals and the piecewise matrix polynomial functions can be put together to approximate the dynamics over each period, which are characterized by Bernstein polynomials. Moreover, the system dynamics contains both matched and mismatched disturbances, wherein the matched disturbance is unknown and resulted from some exogenous system, and mismatched case is norm‐bounded. The control law is configured by integrating the output of the disturbance observer with state‐feedback reliable control law. Particularly, a disturbance observer is designed to estimate the disturbance caused by an exogenous system. Besides, by considering time‐varying polynomial Lyapunov function and making use of Bernstein polynomial approach, a set of sufficient conditions is derived which are expressed in terms of linear matrix inequalities. Further, by virtue of MATLAB software the desired controller and observer gain matrices can be computed. In conclusion, the potential and significance of the theoretical findings are confirmed by presenting a numerical example with simulation results.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/rnc.6316</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-1717-7668</orcidid><orcidid>https://orcid.org/0000-0002-5528-2709</orcidid><orcidid>https://orcid.org/0000-0002-4777-7912</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1049-8923
ispartof International journal of robust and nonlinear control, 2022-11, Vol.32 (16), p.8965-8980
issn 1049-8923
1099-1239
language eng
recordid cdi_proquest_journals_2721070010
source Access via Wiley Online Library
subjects Actuators
Control theory
disturbance observer
Disturbance observers
Liapunov functions
Linear matrix inequalities
Mathematical analysis
multiple disturbances
periodic piecewise polynomial systems
Polynomials
System dynamics
Tracking control
tracking control design
Tracking problem
title Tracking control design for periodic piecewise polynomial systems with multiple disturbances
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T20%3A36%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tracking%20control%20design%20for%20periodic%20piecewise%20polynomial%20systems%20with%20multiple%20disturbances&rft.jtitle=International%20journal%20of%20robust%20and%20nonlinear%20control&rft.au=Rathinasamy,%20Sakthivel&rft.date=2022-11-10&rft.volume=32&rft.issue=16&rft.spage=8965&rft.epage=8980&rft.pages=8965-8980&rft.issn=1049-8923&rft.eissn=1099-1239&rft_id=info:doi/10.1002/rnc.6316&rft_dat=%3Cproquest_cross%3E2721070010%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2721070010&rft_id=info:pmid/&rfr_iscdi=true