Normal Forms for Hamiltonian Systems in Some Nilpotent Cases

We study Hamiltonian systems with two degrees of freedom near an equilibrium point, when the linearized system is not semisimple. The invariants of the adjoint linear system determine the normal form of the full Hamiltonian system. For work on stability or bifurcation the problem is typically reduce...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Regular & chaotic dynamics 2022-09, Vol.27 (5), p.538-560
Hauptverfasser: Meyer, Kenneth R., Schmidt, Dieter S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study Hamiltonian systems with two degrees of freedom near an equilibrium point, when the linearized system is not semisimple. The invariants of the adjoint linear system determine the normal form of the full Hamiltonian system. For work on stability or bifurcation the problem is typically reduced to a semisimple (diagonalizable) case. Here we study the nilpotent cases directly by looking at the Poisson algebra generated by the polynomials of the linear system and its adjoint.
ISSN:1560-3547
1560-3547
1468-4845
DOI:10.1134/S1560354722050033