Laboratory Hydrogen Liquefier with Neon Refrigeration Cycle
A combined hydrogen liquefying unit was developed for laboratory studies in the 21–30 K temperature range. High-pressure neon cycle with refrigeration of a straight flow in a nitrogen bath boiling under vacuum was used. Neon refrigeration reduced the pressure in the hydrogen circuit to 1 MPa. Under...
Gespeichert in:
Veröffentlicht in: | Chemical and petroleum engineering 2022-09, Vol.58 (5-6), p.373-382 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 382 |
---|---|
container_issue | 5-6 |
container_start_page | 373 |
container_title | Chemical and petroleum engineering |
container_volume | 58 |
creator | Bondarenko, V. L. Simonenko, Yu. M. Chigrin, A. A. Medushevskiy, E. V. |
description | A combined hydrogen liquefying unit was developed for laboratory studies in the 21–30 K temperature range. High-pressure neon cycle with refrigeration of a straight flow in a nitrogen bath boiling under vacuum was used. Neon refrigeration reduced the pressure in the hydrogen circuit to 1 MPa. Under the hydrogen liquefaction conditions the productivity of the complex was 18 dm
3
/h for orthohydrogen and 13 dm
3
/h for parahydrogen. The unit also liquefies neon with a flow rate of 7 dm
3
/h. An experimental prototype of the combined hydrogen-neon system was built. Russian-made diaphragm compressors were used in the compression block. The unit was designed for investigating heat insulation, structural properties of materials and phase separation processes in technologies for production of light inert gases. Liquid neon was used to simulate conditions close to the hydrogen temperature level. Preliminary tests of hydrogen equipment were therefore conducted using a relatively safe refrigerant. |
doi_str_mv | 10.1007/s10556-022-01102-3 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2720947035</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A720833910</galeid><sourcerecordid>A720833910</sourcerecordid><originalsourceid>FETCH-LOGICAL-c273t-2a8feeb101b0b00e8d21c303312b2f646efc628e8ea44e63ca44c91d11464d7c3</originalsourceid><addsrcrecordid>eNp9kU1LAzEQhoMoWKt_wNOCJw-pk2Q_8VSK2kJRqHoO2exk3dJuarJF99-buoJ4kRyGCc-TTPIScslgwgCyG88gSVIKnFNgDDgVR2TEkkzQXPDimIwAoKBcJMkpOfN-fWgzzkfkdqlK61RnXR_N-8rZGtto2bzv0TTooo-me4se0bbRCo1ragxoE7pZrzd4Tk6M2ni8-Klj8np_9zKb0-XTw2I2XVLNM9FRrnKDWDJgJZQAmFecaQFCMF5yk8YpGp3yHHNUcYyp0KHoglWMxWlcZVqMydVw7s7ZMJjv5NruXRuulDzjUMQZiCRQk4Gq1QZl0xrbOaXDqnDbaNuGB4X9aRByIQoGQbj-IwSmw8-uVnvv5eJ59ZflA6ud9d6hkTvXbJXrJQN5SEAOCciQgPxOQIogiUHyAW7D3_3O_Y_1Bfl8hoA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2720947035</pqid></control><display><type>article</type><title>Laboratory Hydrogen Liquefier with Neon Refrigeration Cycle</title><source>Springer Nature</source><creator>Bondarenko, V. L. ; Simonenko, Yu. M. ; Chigrin, A. A. ; Medushevskiy, E. V.</creator><creatorcontrib>Bondarenko, V. L. ; Simonenko, Yu. M. ; Chigrin, A. A. ; Medushevskiy, E. V.</creatorcontrib><description>A combined hydrogen liquefying unit was developed for laboratory studies in the 21–30 K temperature range. High-pressure neon cycle with refrigeration of a straight flow in a nitrogen bath boiling under vacuum was used. Neon refrigeration reduced the pressure in the hydrogen circuit to 1 MPa. Under the hydrogen liquefaction conditions the productivity of the complex was 18 dm
3
/h for orthohydrogen and 13 dm
3
/h for parahydrogen. The unit also liquefies neon with a flow rate of 7 dm
3
/h. An experimental prototype of the combined hydrogen-neon system was built. Russian-made diaphragm compressors were used in the compression block. The unit was designed for investigating heat insulation, structural properties of materials and phase separation processes in technologies for production of light inert gases. Liquid neon was used to simulate conditions close to the hydrogen temperature level. Preliminary tests of hydrogen equipment were therefore conducted using a relatively safe refrigerant.</description><identifier>ISSN: 0009-2355</identifier><identifier>EISSN: 1573-8329</identifier><identifier>DOI: 10.1007/s10556-022-01102-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Chemistry ; Chemistry and Materials Science ; Circuits ; Compressors ; Cryogenic Equipment ; Flow velocity ; Geotechnical Engineering & Applied Earth Sciences ; Hydrogen ; Industrial Chemistry/Chemical Engineering ; Industrial Pollution Prevention ; Liquefaction ; Liquid neon ; Material properties ; Mineral Resources ; Neon ; Phase separation ; Production and Application of Industrial Gases. Vacuum Technology ; Rare gases ; Refrigeration</subject><ispartof>Chemical and petroleum engineering, 2022-09, Vol.58 (5-6), p.373-382</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>COPYRIGHT 2022 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c273t-2a8feeb101b0b00e8d21c303312b2f646efc628e8ea44e63ca44c91d11464d7c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10556-022-01102-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10556-022-01102-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Bondarenko, V. L.</creatorcontrib><creatorcontrib>Simonenko, Yu. M.</creatorcontrib><creatorcontrib>Chigrin, A. A.</creatorcontrib><creatorcontrib>Medushevskiy, E. V.</creatorcontrib><title>Laboratory Hydrogen Liquefier with Neon Refrigeration Cycle</title><title>Chemical and petroleum engineering</title><addtitle>Chem Petrol Eng</addtitle><description>A combined hydrogen liquefying unit was developed for laboratory studies in the 21–30 K temperature range. High-pressure neon cycle with refrigeration of a straight flow in a nitrogen bath boiling under vacuum was used. Neon refrigeration reduced the pressure in the hydrogen circuit to 1 MPa. Under the hydrogen liquefaction conditions the productivity of the complex was 18 dm
3
/h for orthohydrogen and 13 dm
3
/h for parahydrogen. The unit also liquefies neon with a flow rate of 7 dm
3
/h. An experimental prototype of the combined hydrogen-neon system was built. Russian-made diaphragm compressors were used in the compression block. The unit was designed for investigating heat insulation, structural properties of materials and phase separation processes in technologies for production of light inert gases. Liquid neon was used to simulate conditions close to the hydrogen temperature level. Preliminary tests of hydrogen equipment were therefore conducted using a relatively safe refrigerant.</description><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Circuits</subject><subject>Compressors</subject><subject>Cryogenic Equipment</subject><subject>Flow velocity</subject><subject>Geotechnical Engineering & Applied Earth Sciences</subject><subject>Hydrogen</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Industrial Pollution Prevention</subject><subject>Liquefaction</subject><subject>Liquid neon</subject><subject>Material properties</subject><subject>Mineral Resources</subject><subject>Neon</subject><subject>Phase separation</subject><subject>Production and Application of Industrial Gases. Vacuum Technology</subject><subject>Rare gases</subject><subject>Refrigeration</subject><issn>0009-2355</issn><issn>1573-8329</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kU1LAzEQhoMoWKt_wNOCJw-pk2Q_8VSK2kJRqHoO2exk3dJuarJF99-buoJ4kRyGCc-TTPIScslgwgCyG88gSVIKnFNgDDgVR2TEkkzQXPDimIwAoKBcJMkpOfN-fWgzzkfkdqlK61RnXR_N-8rZGtto2bzv0TTooo-me4se0bbRCo1ragxoE7pZrzd4Tk6M2ni8-Klj8np_9zKb0-XTw2I2XVLNM9FRrnKDWDJgJZQAmFecaQFCMF5yk8YpGp3yHHNUcYyp0KHoglWMxWlcZVqMydVw7s7ZMJjv5NruXRuulDzjUMQZiCRQk4Gq1QZl0xrbOaXDqnDbaNuGB4X9aRByIQoGQbj-IwSmw8-uVnvv5eJ59ZflA6ud9d6hkTvXbJXrJQN5SEAOCciQgPxOQIogiUHyAW7D3_3O_Y_1Bfl8hoA</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Bondarenko, V. L.</creator><creator>Simonenko, Yu. M.</creator><creator>Chigrin, A. A.</creator><creator>Medushevskiy, E. V.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20220901</creationdate><title>Laboratory Hydrogen Liquefier with Neon Refrigeration Cycle</title><author>Bondarenko, V. L. ; Simonenko, Yu. M. ; Chigrin, A. A. ; Medushevskiy, E. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c273t-2a8feeb101b0b00e8d21c303312b2f646efc628e8ea44e63ca44c91d11464d7c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Circuits</topic><topic>Compressors</topic><topic>Cryogenic Equipment</topic><topic>Flow velocity</topic><topic>Geotechnical Engineering & Applied Earth Sciences</topic><topic>Hydrogen</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Industrial Pollution Prevention</topic><topic>Liquefaction</topic><topic>Liquid neon</topic><topic>Material properties</topic><topic>Mineral Resources</topic><topic>Neon</topic><topic>Phase separation</topic><topic>Production and Application of Industrial Gases. Vacuum Technology</topic><topic>Rare gases</topic><topic>Refrigeration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bondarenko, V. L.</creatorcontrib><creatorcontrib>Simonenko, Yu. M.</creatorcontrib><creatorcontrib>Chigrin, A. A.</creatorcontrib><creatorcontrib>Medushevskiy, E. V.</creatorcontrib><collection>CrossRef</collection><collection>Science (Gale in Context)</collection><jtitle>Chemical and petroleum engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bondarenko, V. L.</au><au>Simonenko, Yu. M.</au><au>Chigrin, A. A.</au><au>Medushevskiy, E. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Laboratory Hydrogen Liquefier with Neon Refrigeration Cycle</atitle><jtitle>Chemical and petroleum engineering</jtitle><stitle>Chem Petrol Eng</stitle><date>2022-09-01</date><risdate>2022</risdate><volume>58</volume><issue>5-6</issue><spage>373</spage><epage>382</epage><pages>373-382</pages><issn>0009-2355</issn><eissn>1573-8329</eissn><abstract>A combined hydrogen liquefying unit was developed for laboratory studies in the 21–30 K temperature range. High-pressure neon cycle with refrigeration of a straight flow in a nitrogen bath boiling under vacuum was used. Neon refrigeration reduced the pressure in the hydrogen circuit to 1 MPa. Under the hydrogen liquefaction conditions the productivity of the complex was 18 dm
3
/h for orthohydrogen and 13 dm
3
/h for parahydrogen. The unit also liquefies neon with a flow rate of 7 dm
3
/h. An experimental prototype of the combined hydrogen-neon system was built. Russian-made diaphragm compressors were used in the compression block. The unit was designed for investigating heat insulation, structural properties of materials and phase separation processes in technologies for production of light inert gases. Liquid neon was used to simulate conditions close to the hydrogen temperature level. Preliminary tests of hydrogen equipment were therefore conducted using a relatively safe refrigerant.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10556-022-01102-3</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0009-2355 |
ispartof | Chemical and petroleum engineering, 2022-09, Vol.58 (5-6), p.373-382 |
issn | 0009-2355 1573-8329 |
language | eng |
recordid | cdi_proquest_journals_2720947035 |
source | Springer Nature |
subjects | Chemistry Chemistry and Materials Science Circuits Compressors Cryogenic Equipment Flow velocity Geotechnical Engineering & Applied Earth Sciences Hydrogen Industrial Chemistry/Chemical Engineering Industrial Pollution Prevention Liquefaction Liquid neon Material properties Mineral Resources Neon Phase separation Production and Application of Industrial Gases. Vacuum Technology Rare gases Refrigeration |
title | Laboratory Hydrogen Liquefier with Neon Refrigeration Cycle |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A15%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Laboratory%20Hydrogen%20Liquefier%20with%20Neon%20Refrigeration%20Cycle&rft.jtitle=Chemical%20and%20petroleum%20engineering&rft.au=Bondarenko,%20V.%20L.&rft.date=2022-09-01&rft.volume=58&rft.issue=5-6&rft.spage=373&rft.epage=382&rft.pages=373-382&rft.issn=0009-2355&rft.eissn=1573-8329&rft_id=info:doi/10.1007/s10556-022-01102-3&rft_dat=%3Cgale_proqu%3EA720833910%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2720947035&rft_id=info:pmid/&rft_galeid=A720833910&rfr_iscdi=true |