Laboratory Hydrogen Liquefier with Neon Refrigeration Cycle

A combined hydrogen liquefying unit was developed for laboratory studies in the 21–30 K temperature range. High-pressure neon cycle with refrigeration of a straight flow in a nitrogen bath boiling under vacuum was used. Neon refrigeration reduced the pressure in the hydrogen circuit to 1 MPa. Under...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical and petroleum engineering 2022-09, Vol.58 (5-6), p.373-382
Hauptverfasser: Bondarenko, V. L., Simonenko, Yu. M., Chigrin, A. A., Medushevskiy, E. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 382
container_issue 5-6
container_start_page 373
container_title Chemical and petroleum engineering
container_volume 58
creator Bondarenko, V. L.
Simonenko, Yu. M.
Chigrin, A. A.
Medushevskiy, E. V.
description A combined hydrogen liquefying unit was developed for laboratory studies in the 21–30 K temperature range. High-pressure neon cycle with refrigeration of a straight flow in a nitrogen bath boiling under vacuum was used. Neon refrigeration reduced the pressure in the hydrogen circuit to 1 MPa. Under the hydrogen liquefaction conditions the productivity of the complex was 18 dm 3 /h for orthohydrogen and 13 dm 3 /h for parahydrogen. The unit also liquefies neon with a flow rate of 7 dm 3 /h. An experimental prototype of the combined hydrogen-neon system was built. Russian-made diaphragm compressors were used in the compression block. The unit was designed for investigating heat insulation, structural properties of materials and phase separation processes in technologies for production of light inert gases. Liquid neon was used to simulate conditions close to the hydrogen temperature level. Preliminary tests of hydrogen equipment were therefore conducted using a relatively safe refrigerant.
doi_str_mv 10.1007/s10556-022-01102-3
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2720947035</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A720833910</galeid><sourcerecordid>A720833910</sourcerecordid><originalsourceid>FETCH-LOGICAL-c273t-2a8feeb101b0b00e8d21c303312b2f646efc628e8ea44e63ca44c91d11464d7c3</originalsourceid><addsrcrecordid>eNp9kU1LAzEQhoMoWKt_wNOCJw-pk2Q_8VSK2kJRqHoO2exk3dJuarJF99-buoJ4kRyGCc-TTPIScslgwgCyG88gSVIKnFNgDDgVR2TEkkzQXPDimIwAoKBcJMkpOfN-fWgzzkfkdqlK61RnXR_N-8rZGtto2bzv0TTooo-me4se0bbRCo1ragxoE7pZrzd4Tk6M2ni8-Klj8np_9zKb0-XTw2I2XVLNM9FRrnKDWDJgJZQAmFecaQFCMF5yk8YpGp3yHHNUcYyp0KHoglWMxWlcZVqMydVw7s7ZMJjv5NruXRuulDzjUMQZiCRQk4Gq1QZl0xrbOaXDqnDbaNuGB4X9aRByIQoGQbj-IwSmw8-uVnvv5eJ59ZflA6ud9d6hkTvXbJXrJQN5SEAOCciQgPxOQIogiUHyAW7D3_3O_Y_1Bfl8hoA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2720947035</pqid></control><display><type>article</type><title>Laboratory Hydrogen Liquefier with Neon Refrigeration Cycle</title><source>Springer Nature</source><creator>Bondarenko, V. L. ; Simonenko, Yu. M. ; Chigrin, A. A. ; Medushevskiy, E. V.</creator><creatorcontrib>Bondarenko, V. L. ; Simonenko, Yu. M. ; Chigrin, A. A. ; Medushevskiy, E. V.</creatorcontrib><description>A combined hydrogen liquefying unit was developed for laboratory studies in the 21–30 K temperature range. High-pressure neon cycle with refrigeration of a straight flow in a nitrogen bath boiling under vacuum was used. Neon refrigeration reduced the pressure in the hydrogen circuit to 1 MPa. Under the hydrogen liquefaction conditions the productivity of the complex was 18 dm 3 /h for orthohydrogen and 13 dm 3 /h for parahydrogen. The unit also liquefies neon with a flow rate of 7 dm 3 /h. An experimental prototype of the combined hydrogen-neon system was built. Russian-made diaphragm compressors were used in the compression block. The unit was designed for investigating heat insulation, structural properties of materials and phase separation processes in technologies for production of light inert gases. Liquid neon was used to simulate conditions close to the hydrogen temperature level. Preliminary tests of hydrogen equipment were therefore conducted using a relatively safe refrigerant.</description><identifier>ISSN: 0009-2355</identifier><identifier>EISSN: 1573-8329</identifier><identifier>DOI: 10.1007/s10556-022-01102-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Chemistry ; Chemistry and Materials Science ; Circuits ; Compressors ; Cryogenic Equipment ; Flow velocity ; Geotechnical Engineering &amp; Applied Earth Sciences ; Hydrogen ; Industrial Chemistry/Chemical Engineering ; Industrial Pollution Prevention ; Liquefaction ; Liquid neon ; Material properties ; Mineral Resources ; Neon ; Phase separation ; Production and Application of Industrial Gases. Vacuum Technology ; Rare gases ; Refrigeration</subject><ispartof>Chemical and petroleum engineering, 2022-09, Vol.58 (5-6), p.373-382</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>COPYRIGHT 2022 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c273t-2a8feeb101b0b00e8d21c303312b2f646efc628e8ea44e63ca44c91d11464d7c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10556-022-01102-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10556-022-01102-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Bondarenko, V. L.</creatorcontrib><creatorcontrib>Simonenko, Yu. M.</creatorcontrib><creatorcontrib>Chigrin, A. A.</creatorcontrib><creatorcontrib>Medushevskiy, E. V.</creatorcontrib><title>Laboratory Hydrogen Liquefier with Neon Refrigeration Cycle</title><title>Chemical and petroleum engineering</title><addtitle>Chem Petrol Eng</addtitle><description>A combined hydrogen liquefying unit was developed for laboratory studies in the 21–30 K temperature range. High-pressure neon cycle with refrigeration of a straight flow in a nitrogen bath boiling under vacuum was used. Neon refrigeration reduced the pressure in the hydrogen circuit to 1 MPa. Under the hydrogen liquefaction conditions the productivity of the complex was 18 dm 3 /h for orthohydrogen and 13 dm 3 /h for parahydrogen. The unit also liquefies neon with a flow rate of 7 dm 3 /h. An experimental prototype of the combined hydrogen-neon system was built. Russian-made diaphragm compressors were used in the compression block. The unit was designed for investigating heat insulation, structural properties of materials and phase separation processes in technologies for production of light inert gases. Liquid neon was used to simulate conditions close to the hydrogen temperature level. Preliminary tests of hydrogen equipment were therefore conducted using a relatively safe refrigerant.</description><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Circuits</subject><subject>Compressors</subject><subject>Cryogenic Equipment</subject><subject>Flow velocity</subject><subject>Geotechnical Engineering &amp; Applied Earth Sciences</subject><subject>Hydrogen</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Industrial Pollution Prevention</subject><subject>Liquefaction</subject><subject>Liquid neon</subject><subject>Material properties</subject><subject>Mineral Resources</subject><subject>Neon</subject><subject>Phase separation</subject><subject>Production and Application of Industrial Gases. Vacuum Technology</subject><subject>Rare gases</subject><subject>Refrigeration</subject><issn>0009-2355</issn><issn>1573-8329</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kU1LAzEQhoMoWKt_wNOCJw-pk2Q_8VSK2kJRqHoO2exk3dJuarJF99-buoJ4kRyGCc-TTPIScslgwgCyG88gSVIKnFNgDDgVR2TEkkzQXPDimIwAoKBcJMkpOfN-fWgzzkfkdqlK61RnXR_N-8rZGtto2bzv0TTooo-me4se0bbRCo1ragxoE7pZrzd4Tk6M2ni8-Klj8np_9zKb0-XTw2I2XVLNM9FRrnKDWDJgJZQAmFecaQFCMF5yk8YpGp3yHHNUcYyp0KHoglWMxWlcZVqMydVw7s7ZMJjv5NruXRuulDzjUMQZiCRQk4Gq1QZl0xrbOaXDqnDbaNuGB4X9aRByIQoGQbj-IwSmw8-uVnvv5eJ59ZflA6ud9d6hkTvXbJXrJQN5SEAOCciQgPxOQIogiUHyAW7D3_3O_Y_1Bfl8hoA</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Bondarenko, V. L.</creator><creator>Simonenko, Yu. M.</creator><creator>Chigrin, A. A.</creator><creator>Medushevskiy, E. V.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20220901</creationdate><title>Laboratory Hydrogen Liquefier with Neon Refrigeration Cycle</title><author>Bondarenko, V. L. ; Simonenko, Yu. M. ; Chigrin, A. A. ; Medushevskiy, E. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c273t-2a8feeb101b0b00e8d21c303312b2f646efc628e8ea44e63ca44c91d11464d7c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Circuits</topic><topic>Compressors</topic><topic>Cryogenic Equipment</topic><topic>Flow velocity</topic><topic>Geotechnical Engineering &amp; Applied Earth Sciences</topic><topic>Hydrogen</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Industrial Pollution Prevention</topic><topic>Liquefaction</topic><topic>Liquid neon</topic><topic>Material properties</topic><topic>Mineral Resources</topic><topic>Neon</topic><topic>Phase separation</topic><topic>Production and Application of Industrial Gases. Vacuum Technology</topic><topic>Rare gases</topic><topic>Refrigeration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bondarenko, V. L.</creatorcontrib><creatorcontrib>Simonenko, Yu. M.</creatorcontrib><creatorcontrib>Chigrin, A. A.</creatorcontrib><creatorcontrib>Medushevskiy, E. V.</creatorcontrib><collection>CrossRef</collection><collection>Science (Gale in Context)</collection><jtitle>Chemical and petroleum engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bondarenko, V. L.</au><au>Simonenko, Yu. M.</au><au>Chigrin, A. A.</au><au>Medushevskiy, E. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Laboratory Hydrogen Liquefier with Neon Refrigeration Cycle</atitle><jtitle>Chemical and petroleum engineering</jtitle><stitle>Chem Petrol Eng</stitle><date>2022-09-01</date><risdate>2022</risdate><volume>58</volume><issue>5-6</issue><spage>373</spage><epage>382</epage><pages>373-382</pages><issn>0009-2355</issn><eissn>1573-8329</eissn><abstract>A combined hydrogen liquefying unit was developed for laboratory studies in the 21–30 K temperature range. High-pressure neon cycle with refrigeration of a straight flow in a nitrogen bath boiling under vacuum was used. Neon refrigeration reduced the pressure in the hydrogen circuit to 1 MPa. Under the hydrogen liquefaction conditions the productivity of the complex was 18 dm 3 /h for orthohydrogen and 13 dm 3 /h for parahydrogen. The unit also liquefies neon with a flow rate of 7 dm 3 /h. An experimental prototype of the combined hydrogen-neon system was built. Russian-made diaphragm compressors were used in the compression block. The unit was designed for investigating heat insulation, structural properties of materials and phase separation processes in technologies for production of light inert gases. Liquid neon was used to simulate conditions close to the hydrogen temperature level. Preliminary tests of hydrogen equipment were therefore conducted using a relatively safe refrigerant.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10556-022-01102-3</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0009-2355
ispartof Chemical and petroleum engineering, 2022-09, Vol.58 (5-6), p.373-382
issn 0009-2355
1573-8329
language eng
recordid cdi_proquest_journals_2720947035
source Springer Nature
subjects Chemistry
Chemistry and Materials Science
Circuits
Compressors
Cryogenic Equipment
Flow velocity
Geotechnical Engineering & Applied Earth Sciences
Hydrogen
Industrial Chemistry/Chemical Engineering
Industrial Pollution Prevention
Liquefaction
Liquid neon
Material properties
Mineral Resources
Neon
Phase separation
Production and Application of Industrial Gases. Vacuum Technology
Rare gases
Refrigeration
title Laboratory Hydrogen Liquefier with Neon Refrigeration Cycle
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A15%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Laboratory%20Hydrogen%20Liquefier%20with%20Neon%20Refrigeration%20Cycle&rft.jtitle=Chemical%20and%20petroleum%20engineering&rft.au=Bondarenko,%20V.%20L.&rft.date=2022-09-01&rft.volume=58&rft.issue=5-6&rft.spage=373&rft.epage=382&rft.pages=373-382&rft.issn=0009-2355&rft.eissn=1573-8329&rft_id=info:doi/10.1007/s10556-022-01102-3&rft_dat=%3Cgale_proqu%3EA720833910%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2720947035&rft_id=info:pmid/&rft_galeid=A720833910&rfr_iscdi=true