Lorentzian Gromov–Hausdorff theory and finiteness results
Cheeger–Gromov finiteness results, asserting that there are only finitely many diffeomorphism types of manifolds satisfying certain geometric bounds, feature among the most prominent results in Riemannian geometry. To transplant those into Lorentzian geometry, one could use a functor between a Loren...
Gespeichert in:
Veröffentlicht in: | General relativity and gravitation 2022-10, Vol.54 (10), Article 117 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 10 |
container_start_page | |
container_title | General relativity and gravitation |
container_volume | 54 |
creator | Müller, Olaf |
description | Cheeger–Gromov finiteness results, asserting that there are only finitely many diffeomorphism types of manifolds satisfying certain geometric bounds, feature among the most prominent results in Riemannian geometry. To transplant those into Lorentzian geometry, one could use a functor between a Lorentzian and a Riemannian category, which, however, can be shown not to exist if the former contains Minkowski space and its isometries. Here, we construct a functor from a restricted category of Lorentzian manifolds-with-boundary (regions between two Cauchy surfaces) to a category of Riemannian manifolds-with-boundary that preserves geometric bounds and obtain, as a corollary, the first known Lorentzian Cheeger–Gromov type finiteness result. |
doi_str_mv | 10.1007/s10714-022-03000-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2720947002</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2720947002</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-8454d6cb055bd11b5346ffe87b7d529f14846099cc79420f0878e66a1a46a53</originalsourceid><addsrcrecordid>eNp9kM1KAzEURoMoWKsv4GrAdfTmP8GVFG2Fggvdh8xMolPaSU1mhLryHXzDPomjI7hzdbmX830XDkLnBC4JgLrKBBThGCjFwAAA6wM0IUJRbASjh2gy3AhWCsgxOsl5NaxGSTVB18uYfNu9N64t5ilu4tv-43Ph-lzHFELRvfiYdoVr6yI0bdP51udcJJ_7dZdP0VFw6-zPfucUPd7dPs0WePkwv5_dLHHFJOuw5oLXsipBiLImpBSMyxC8VqWqBTWBcM0lGFNVynAKAbTSXkpHHJdOsCm6GFu3Kb72Pnd2FfvUDg8tVRQMVwB0oOhIVSnmnHyw29RsXNpZAvZbkR0V2UGR_VFk9RBiYygPcPvs01_1P6kvuixpRQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2720947002</pqid></control><display><type>article</type><title>Lorentzian Gromov–Hausdorff theory and finiteness results</title><source>Springer Nature - Complete Springer Journals</source><creator>Müller, Olaf</creator><creatorcontrib>Müller, Olaf</creatorcontrib><description>Cheeger–Gromov finiteness results, asserting that there are only finitely many diffeomorphism types of manifolds satisfying certain geometric bounds, feature among the most prominent results in Riemannian geometry. To transplant those into Lorentzian geometry, one could use a functor between a Lorentzian and a Riemannian category, which, however, can be shown not to exist if the former contains Minkowski space and its isometries. Here, we construct a functor from a restricted category of Lorentzian manifolds-with-boundary (regions between two Cauchy surfaces) to a category of Riemannian manifolds-with-boundary that preserves geometric bounds and obtain, as a corollary, the first known Lorentzian Cheeger–Gromov type finiteness result.</description><identifier>ISSN: 0001-7701</identifier><identifier>EISSN: 1572-9532</identifier><identifier>DOI: 10.1007/s10714-022-03000-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Astronomy ; Astrophysics and Cosmology ; Classical and Quantum Gravitation ; Differential Geometry ; Gravity ; Isomorphism ; Manifolds (mathematics) ; Mathematical and Computational Physics ; Minkowski space ; Physics ; Physics and Astronomy ; Quantum Physics ; Relativity Theory ; Research Article ; Riemann manifold ; Theoretical</subject><ispartof>General relativity and gravitation, 2022-10, Vol.54 (10), Article 117</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-8454d6cb055bd11b5346ffe87b7d529f14846099cc79420f0878e66a1a46a53</citedby><cites>FETCH-LOGICAL-c363t-8454d6cb055bd11b5346ffe87b7d529f14846099cc79420f0878e66a1a46a53</cites><orcidid>0000-0002-6434-1846</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10714-022-03000-8$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10714-022-03000-8$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Müller, Olaf</creatorcontrib><title>Lorentzian Gromov–Hausdorff theory and finiteness results</title><title>General relativity and gravitation</title><addtitle>Gen Relativ Gravit</addtitle><description>Cheeger–Gromov finiteness results, asserting that there are only finitely many diffeomorphism types of manifolds satisfying certain geometric bounds, feature among the most prominent results in Riemannian geometry. To transplant those into Lorentzian geometry, one could use a functor between a Lorentzian and a Riemannian category, which, however, can be shown not to exist if the former contains Minkowski space and its isometries. Here, we construct a functor from a restricted category of Lorentzian manifolds-with-boundary (regions between two Cauchy surfaces) to a category of Riemannian manifolds-with-boundary that preserves geometric bounds and obtain, as a corollary, the first known Lorentzian Cheeger–Gromov type finiteness result.</description><subject>Astronomy</subject><subject>Astrophysics and Cosmology</subject><subject>Classical and Quantum Gravitation</subject><subject>Differential Geometry</subject><subject>Gravity</subject><subject>Isomorphism</subject><subject>Manifolds (mathematics)</subject><subject>Mathematical and Computational Physics</subject><subject>Minkowski space</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Relativity Theory</subject><subject>Research Article</subject><subject>Riemann manifold</subject><subject>Theoretical</subject><issn>0001-7701</issn><issn>1572-9532</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kM1KAzEURoMoWKsv4GrAdfTmP8GVFG2Fggvdh8xMolPaSU1mhLryHXzDPomjI7hzdbmX830XDkLnBC4JgLrKBBThGCjFwAAA6wM0IUJRbASjh2gy3AhWCsgxOsl5NaxGSTVB18uYfNu9N64t5ilu4tv-43Ph-lzHFELRvfiYdoVr6yI0bdP51udcJJ_7dZdP0VFw6-zPfucUPd7dPs0WePkwv5_dLHHFJOuw5oLXsipBiLImpBSMyxC8VqWqBTWBcM0lGFNVynAKAbTSXkpHHJdOsCm6GFu3Kb72Pnd2FfvUDg8tVRQMVwB0oOhIVSnmnHyw29RsXNpZAvZbkR0V2UGR_VFk9RBiYygPcPvs01_1P6kvuixpRQ</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Müller, Olaf</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6434-1846</orcidid></search><sort><creationdate>20221001</creationdate><title>Lorentzian Gromov–Hausdorff theory and finiteness results</title><author>Müller, Olaf</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-8454d6cb055bd11b5346ffe87b7d529f14846099cc79420f0878e66a1a46a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Astronomy</topic><topic>Astrophysics and Cosmology</topic><topic>Classical and Quantum Gravitation</topic><topic>Differential Geometry</topic><topic>Gravity</topic><topic>Isomorphism</topic><topic>Manifolds (mathematics)</topic><topic>Mathematical and Computational Physics</topic><topic>Minkowski space</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Relativity Theory</topic><topic>Research Article</topic><topic>Riemann manifold</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Müller, Olaf</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>General relativity and gravitation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Müller, Olaf</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lorentzian Gromov–Hausdorff theory and finiteness results</atitle><jtitle>General relativity and gravitation</jtitle><stitle>Gen Relativ Gravit</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>54</volume><issue>10</issue><artnum>117</artnum><issn>0001-7701</issn><eissn>1572-9532</eissn><abstract>Cheeger–Gromov finiteness results, asserting that there are only finitely many diffeomorphism types of manifolds satisfying certain geometric bounds, feature among the most prominent results in Riemannian geometry. To transplant those into Lorentzian geometry, one could use a functor between a Lorentzian and a Riemannian category, which, however, can be shown not to exist if the former contains Minkowski space and its isometries. Here, we construct a functor from a restricted category of Lorentzian manifolds-with-boundary (regions between two Cauchy surfaces) to a category of Riemannian manifolds-with-boundary that preserves geometric bounds and obtain, as a corollary, the first known Lorentzian Cheeger–Gromov type finiteness result.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10714-022-03000-8</doi><orcidid>https://orcid.org/0000-0002-6434-1846</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-7701 |
ispartof | General relativity and gravitation, 2022-10, Vol.54 (10), Article 117 |
issn | 0001-7701 1572-9532 |
language | eng |
recordid | cdi_proquest_journals_2720947002 |
source | Springer Nature - Complete Springer Journals |
subjects | Astronomy Astrophysics and Cosmology Classical and Quantum Gravitation Differential Geometry Gravity Isomorphism Manifolds (mathematics) Mathematical and Computational Physics Minkowski space Physics Physics and Astronomy Quantum Physics Relativity Theory Research Article Riemann manifold Theoretical |
title | Lorentzian Gromov–Hausdorff theory and finiteness results |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T14%3A41%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lorentzian%20Gromov%E2%80%93Hausdorff%20theory%20and%20finiteness%20results&rft.jtitle=General%20relativity%20and%20gravitation&rft.au=M%C3%BCller,%20Olaf&rft.date=2022-10-01&rft.volume=54&rft.issue=10&rft.artnum=117&rft.issn=0001-7701&rft.eissn=1572-9532&rft_id=info:doi/10.1007/s10714-022-03000-8&rft_dat=%3Cproquest_cross%3E2720947002%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2720947002&rft_id=info:pmid/&rfr_iscdi=true |