Lorentzian Gromov–Hausdorff theory and finiteness results

Cheeger–Gromov finiteness results, asserting that there are only finitely many diffeomorphism types of manifolds satisfying certain geometric bounds, feature among the most prominent results in Riemannian geometry. To transplant those into Lorentzian geometry, one could use a functor between a Loren...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:General relativity and gravitation 2022-10, Vol.54 (10), Article 117
1. Verfasser: Müller, Olaf
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 10
container_start_page
container_title General relativity and gravitation
container_volume 54
creator Müller, Olaf
description Cheeger–Gromov finiteness results, asserting that there are only finitely many diffeomorphism types of manifolds satisfying certain geometric bounds, feature among the most prominent results in Riemannian geometry. To transplant those into Lorentzian geometry, one could use a functor between a Lorentzian and a Riemannian category, which, however, can be shown not to exist if the former contains Minkowski space and its isometries. Here, we construct a functor from a restricted category of Lorentzian manifolds-with-boundary (regions between two Cauchy surfaces) to a category of Riemannian manifolds-with-boundary that preserves geometric bounds and obtain, as a corollary, the first known Lorentzian Cheeger–Gromov type finiteness result.
doi_str_mv 10.1007/s10714-022-03000-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2720947002</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2720947002</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-8454d6cb055bd11b5346ffe87b7d529f14846099cc79420f0878e66a1a46a53</originalsourceid><addsrcrecordid>eNp9kM1KAzEURoMoWKsv4GrAdfTmP8GVFG2Fggvdh8xMolPaSU1mhLryHXzDPomjI7hzdbmX830XDkLnBC4JgLrKBBThGCjFwAAA6wM0IUJRbASjh2gy3AhWCsgxOsl5NaxGSTVB18uYfNu9N64t5ilu4tv-43Ph-lzHFELRvfiYdoVr6yI0bdP51udcJJ_7dZdP0VFw6-zPfucUPd7dPs0WePkwv5_dLHHFJOuw5oLXsipBiLImpBSMyxC8VqWqBTWBcM0lGFNVynAKAbTSXkpHHJdOsCm6GFu3Kb72Pnd2FfvUDg8tVRQMVwB0oOhIVSnmnHyw29RsXNpZAvZbkR0V2UGR_VFk9RBiYygPcPvs01_1P6kvuixpRQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2720947002</pqid></control><display><type>article</type><title>Lorentzian Gromov–Hausdorff theory and finiteness results</title><source>Springer Nature - Complete Springer Journals</source><creator>Müller, Olaf</creator><creatorcontrib>Müller, Olaf</creatorcontrib><description>Cheeger–Gromov finiteness results, asserting that there are only finitely many diffeomorphism types of manifolds satisfying certain geometric bounds, feature among the most prominent results in Riemannian geometry. To transplant those into Lorentzian geometry, one could use a functor between a Lorentzian and a Riemannian category, which, however, can be shown not to exist if the former contains Minkowski space and its isometries. Here, we construct a functor from a restricted category of Lorentzian manifolds-with-boundary (regions between two Cauchy surfaces) to a category of Riemannian manifolds-with-boundary that preserves geometric bounds and obtain, as a corollary, the first known Lorentzian Cheeger–Gromov type finiteness result.</description><identifier>ISSN: 0001-7701</identifier><identifier>EISSN: 1572-9532</identifier><identifier>DOI: 10.1007/s10714-022-03000-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Astronomy ; Astrophysics and Cosmology ; Classical and Quantum Gravitation ; Differential Geometry ; Gravity ; Isomorphism ; Manifolds (mathematics) ; Mathematical and Computational Physics ; Minkowski space ; Physics ; Physics and Astronomy ; Quantum Physics ; Relativity Theory ; Research Article ; Riemann manifold ; Theoretical</subject><ispartof>General relativity and gravitation, 2022-10, Vol.54 (10), Article 117</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-8454d6cb055bd11b5346ffe87b7d529f14846099cc79420f0878e66a1a46a53</citedby><cites>FETCH-LOGICAL-c363t-8454d6cb055bd11b5346ffe87b7d529f14846099cc79420f0878e66a1a46a53</cites><orcidid>0000-0002-6434-1846</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10714-022-03000-8$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10714-022-03000-8$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Müller, Olaf</creatorcontrib><title>Lorentzian Gromov–Hausdorff theory and finiteness results</title><title>General relativity and gravitation</title><addtitle>Gen Relativ Gravit</addtitle><description>Cheeger–Gromov finiteness results, asserting that there are only finitely many diffeomorphism types of manifolds satisfying certain geometric bounds, feature among the most prominent results in Riemannian geometry. To transplant those into Lorentzian geometry, one could use a functor between a Lorentzian and a Riemannian category, which, however, can be shown not to exist if the former contains Minkowski space and its isometries. Here, we construct a functor from a restricted category of Lorentzian manifolds-with-boundary (regions between two Cauchy surfaces) to a category of Riemannian manifolds-with-boundary that preserves geometric bounds and obtain, as a corollary, the first known Lorentzian Cheeger–Gromov type finiteness result.</description><subject>Astronomy</subject><subject>Astrophysics and Cosmology</subject><subject>Classical and Quantum Gravitation</subject><subject>Differential Geometry</subject><subject>Gravity</subject><subject>Isomorphism</subject><subject>Manifolds (mathematics)</subject><subject>Mathematical and Computational Physics</subject><subject>Minkowski space</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Relativity Theory</subject><subject>Research Article</subject><subject>Riemann manifold</subject><subject>Theoretical</subject><issn>0001-7701</issn><issn>1572-9532</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kM1KAzEURoMoWKsv4GrAdfTmP8GVFG2Fggvdh8xMolPaSU1mhLryHXzDPomjI7hzdbmX830XDkLnBC4JgLrKBBThGCjFwAAA6wM0IUJRbASjh2gy3AhWCsgxOsl5NaxGSTVB18uYfNu9N64t5ilu4tv-43Ph-lzHFELRvfiYdoVr6yI0bdP51udcJJ_7dZdP0VFw6-zPfucUPd7dPs0WePkwv5_dLHHFJOuw5oLXsipBiLImpBSMyxC8VqWqBTWBcM0lGFNVynAKAbTSXkpHHJdOsCm6GFu3Kb72Pnd2FfvUDg8tVRQMVwB0oOhIVSnmnHyw29RsXNpZAvZbkR0V2UGR_VFk9RBiYygPcPvs01_1P6kvuixpRQ</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Müller, Olaf</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6434-1846</orcidid></search><sort><creationdate>20221001</creationdate><title>Lorentzian Gromov–Hausdorff theory and finiteness results</title><author>Müller, Olaf</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-8454d6cb055bd11b5346ffe87b7d529f14846099cc79420f0878e66a1a46a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Astronomy</topic><topic>Astrophysics and Cosmology</topic><topic>Classical and Quantum Gravitation</topic><topic>Differential Geometry</topic><topic>Gravity</topic><topic>Isomorphism</topic><topic>Manifolds (mathematics)</topic><topic>Mathematical and Computational Physics</topic><topic>Minkowski space</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Relativity Theory</topic><topic>Research Article</topic><topic>Riemann manifold</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Müller, Olaf</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>General relativity and gravitation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Müller, Olaf</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lorentzian Gromov–Hausdorff theory and finiteness results</atitle><jtitle>General relativity and gravitation</jtitle><stitle>Gen Relativ Gravit</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>54</volume><issue>10</issue><artnum>117</artnum><issn>0001-7701</issn><eissn>1572-9532</eissn><abstract>Cheeger–Gromov finiteness results, asserting that there are only finitely many diffeomorphism types of manifolds satisfying certain geometric bounds, feature among the most prominent results in Riemannian geometry. To transplant those into Lorentzian geometry, one could use a functor between a Lorentzian and a Riemannian category, which, however, can be shown not to exist if the former contains Minkowski space and its isometries. Here, we construct a functor from a restricted category of Lorentzian manifolds-with-boundary (regions between two Cauchy surfaces) to a category of Riemannian manifolds-with-boundary that preserves geometric bounds and obtain, as a corollary, the first known Lorentzian Cheeger–Gromov type finiteness result.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10714-022-03000-8</doi><orcidid>https://orcid.org/0000-0002-6434-1846</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0001-7701
ispartof General relativity and gravitation, 2022-10, Vol.54 (10), Article 117
issn 0001-7701
1572-9532
language eng
recordid cdi_proquest_journals_2720947002
source Springer Nature - Complete Springer Journals
subjects Astronomy
Astrophysics and Cosmology
Classical and Quantum Gravitation
Differential Geometry
Gravity
Isomorphism
Manifolds (mathematics)
Mathematical and Computational Physics
Minkowski space
Physics
Physics and Astronomy
Quantum Physics
Relativity Theory
Research Article
Riemann manifold
Theoretical
title Lorentzian Gromov–Hausdorff theory and finiteness results
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T14%3A41%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lorentzian%20Gromov%E2%80%93Hausdorff%20theory%20and%20finiteness%20results&rft.jtitle=General%20relativity%20and%20gravitation&rft.au=M%C3%BCller,%20Olaf&rft.date=2022-10-01&rft.volume=54&rft.issue=10&rft.artnum=117&rft.issn=0001-7701&rft.eissn=1572-9532&rft_id=info:doi/10.1007/s10714-022-03000-8&rft_dat=%3Cproquest_cross%3E2720947002%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2720947002&rft_id=info:pmid/&rfr_iscdi=true