Electronic Characteristics of Ultra‐Thin Passivation Layers for Silicon Photovoltaics
Surface passivating thin films are crucial for limiting the electrical losses during charge carrier collection in silicon photovoltaic devices. Certain dielectric coatings of more than 10 nm provide excellent surface passivation, and ultra‐thin (
Gespeichert in:
Veröffentlicht in: | Advanced materials interfaces 2022-10, Vol.9 (28), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 28 |
container_start_page | |
container_title | Advanced materials interfaces |
container_volume | 9 |
creator | Pain, Sophie L. Khorani, Edris Niewelt, Tim Wratten, Ailish Paez Fajardo, Galo J. Winfield, Ben P. Bonilla, Ruy S. Walker, Marc Piper, Louis F. J. Grant, Nicholas E. Murphy, John D. |
description | Surface passivating thin films are crucial for limiting the electrical losses during charge carrier collection in silicon photovoltaic devices. Certain dielectric coatings of more than 10 nm provide excellent surface passivation, and ultra‐thin ( |
doi_str_mv | 10.1002/admi.202201339 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2720757904</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2720757904</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3579-224c98b0eba376bc5e78d6d597745b64ebf5566ffb8ca3286dced64d99b93c093</originalsourceid><addsrcrecordid>eNqFkM1KAzEURoMoWLRb1wHXU_Mzk0yWpVYtVCzY4jJkMglNmU5qkla68xF8Rp_EKRV15-peLufcDz4ArjAaYITIjarXbkAQIQhTKk5Aj2DBMk4LdPpnPwf9GFcIIYwJJiXtgZdxY3QKvnUajpYqKJ1McDE5HaG3cNGkoD7fP-ZL18KZitHtVHK-hVO1NyFC6wN8do3T3Wm29MnvfJNUJ1-CM6uaaPrf8wIs7sbz0UM2fbqfjIbTTNOCi4yQXIuyQqZSlLNKF4aXNasLwXleVCw3lS0KxqytSq0oKVmtTc3yWohKUI0EvQDXx7-b4F-3Jia58tvQdpGScIJ4F4LyjhocKR18jMFYuQlurcJeYiQP_clDf_Knv04QR-HNNWb_Dy2Ht4-TX_cLKy91_A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2720757904</pqid></control><display><type>article</type><title>Electronic Characteristics of Ultra‐Thin Passivation Layers for Silicon Photovoltaics</title><source>Access via Wiley Online Library</source><creator>Pain, Sophie L. ; Khorani, Edris ; Niewelt, Tim ; Wratten, Ailish ; Paez Fajardo, Galo J. ; Winfield, Ben P. ; Bonilla, Ruy S. ; Walker, Marc ; Piper, Louis F. J. ; Grant, Nicholas E. ; Murphy, John D.</creator><creatorcontrib>Pain, Sophie L. ; Khorani, Edris ; Niewelt, Tim ; Wratten, Ailish ; Paez Fajardo, Galo J. ; Winfield, Ben P. ; Bonilla, Ruy S. ; Walker, Marc ; Piper, Louis F. J. ; Grant, Nicholas E. ; Murphy, John D.</creatorcontrib><description>Surface passivating thin films are crucial for limiting the electrical losses during charge carrier collection in silicon photovoltaic devices. Certain dielectric coatings of more than 10 nm provide excellent surface passivation, and ultra‐thin (<2 nm) dielectric layers can serve as interlayers in passivating contacts. Here, ultra‐thin passivating films of SiO2, Al2O3, and HfO2 are created via plasma‐enhanced atomic layer deposition and annealing. It is found that thin negatively charged HfO2 layers exhibit excellent passivation properties—exceeding those of SiO2 and Al2O3—with 0.9 nm HfO2 annealed at 450 °C providing a surface recombination velocity of 18.6 cm s−1. The passivation quality is dependent on annealing temperature and layer thickness, and optimum passivation is achieved with HfO2 layers annealed at 450 °C measured to be 2.2–3.3 nm thick which give surface recombination velocities ≤2.5 cm s−1 and J0 values of ≈14 fA cm−2. The superior passivation quality of HfO2 nanolayers makes them a promising candidate for future passivating contacts in high‐efficiency silicon solar cells.
Ultra‐thin SiO2, Al2O3, and HfO2 layers are produced via plasma‐enhanced atomic layer deposition, with negatively charged HfO2 providing excellent passivation. Passivation is temperature and thickness‐dependent. Optimum passivation with 2.2–3.3 nm HfO2 layers annealed at 450 °C gives surface recombination velocities ≤2.5 cm s−1 and J0 values ≈14 fA cm−2, thus demonstrating HfO2's promise as an ultra‐thin passivating layer.</description><identifier>ISSN: 2196-7350</identifier><identifier>EISSN: 2196-7350</identifier><identifier>DOI: 10.1002/admi.202201339</identifier><language>eng</language><publisher>Weinheim: John Wiley & Sons, Inc</publisher><subject>Aluminum oxide ; Annealing ; Atomic layer deposition ; Atomic layer epitaxy ; Current carriers ; dielectrics ; Electric contacts ; Hafnium oxide ; Interlayers ; passivation ; Passivity ; Photovoltaic cells ; silicon ; Silicon dioxide ; Solar cells ; Temperature dependence ; Thickness ; Thin films</subject><ispartof>Advanced materials interfaces, 2022-10, Vol.9 (28), p.n/a</ispartof><rights>2022 The Authors. Advanced Materials Interfaces published by Wiley‐VCH GmbH</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3579-224c98b0eba376bc5e78d6d597745b64ebf5566ffb8ca3286dced64d99b93c093</citedby><cites>FETCH-LOGICAL-c3579-224c98b0eba376bc5e78d6d597745b64ebf5566ffb8ca3286dced64d99b93c093</cites><orcidid>0000-0003-0993-5972</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadmi.202201339$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadmi.202201339$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,45579,45580</link.rule.ids></links><search><creatorcontrib>Pain, Sophie L.</creatorcontrib><creatorcontrib>Khorani, Edris</creatorcontrib><creatorcontrib>Niewelt, Tim</creatorcontrib><creatorcontrib>Wratten, Ailish</creatorcontrib><creatorcontrib>Paez Fajardo, Galo J.</creatorcontrib><creatorcontrib>Winfield, Ben P.</creatorcontrib><creatorcontrib>Bonilla, Ruy S.</creatorcontrib><creatorcontrib>Walker, Marc</creatorcontrib><creatorcontrib>Piper, Louis F. J.</creatorcontrib><creatorcontrib>Grant, Nicholas E.</creatorcontrib><creatorcontrib>Murphy, John D.</creatorcontrib><title>Electronic Characteristics of Ultra‐Thin Passivation Layers for Silicon Photovoltaics</title><title>Advanced materials interfaces</title><description>Surface passivating thin films are crucial for limiting the electrical losses during charge carrier collection in silicon photovoltaic devices. Certain dielectric coatings of more than 10 nm provide excellent surface passivation, and ultra‐thin (<2 nm) dielectric layers can serve as interlayers in passivating contacts. Here, ultra‐thin passivating films of SiO2, Al2O3, and HfO2 are created via plasma‐enhanced atomic layer deposition and annealing. It is found that thin negatively charged HfO2 layers exhibit excellent passivation properties—exceeding those of SiO2 and Al2O3—with 0.9 nm HfO2 annealed at 450 °C providing a surface recombination velocity of 18.6 cm s−1. The passivation quality is dependent on annealing temperature and layer thickness, and optimum passivation is achieved with HfO2 layers annealed at 450 °C measured to be 2.2–3.3 nm thick which give surface recombination velocities ≤2.5 cm s−1 and J0 values of ≈14 fA cm−2. The superior passivation quality of HfO2 nanolayers makes them a promising candidate for future passivating contacts in high‐efficiency silicon solar cells.
Ultra‐thin SiO2, Al2O3, and HfO2 layers are produced via plasma‐enhanced atomic layer deposition, with negatively charged HfO2 providing excellent passivation. Passivation is temperature and thickness‐dependent. Optimum passivation with 2.2–3.3 nm HfO2 layers annealed at 450 °C gives surface recombination velocities ≤2.5 cm s−1 and J0 values ≈14 fA cm−2, thus demonstrating HfO2's promise as an ultra‐thin passivating layer.</description><subject>Aluminum oxide</subject><subject>Annealing</subject><subject>Atomic layer deposition</subject><subject>Atomic layer epitaxy</subject><subject>Current carriers</subject><subject>dielectrics</subject><subject>Electric contacts</subject><subject>Hafnium oxide</subject><subject>Interlayers</subject><subject>passivation</subject><subject>Passivity</subject><subject>Photovoltaic cells</subject><subject>silicon</subject><subject>Silicon dioxide</subject><subject>Solar cells</subject><subject>Temperature dependence</subject><subject>Thickness</subject><subject>Thin films</subject><issn>2196-7350</issn><issn>2196-7350</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkM1KAzEURoMoWLRb1wHXU_Mzk0yWpVYtVCzY4jJkMglNmU5qkla68xF8Rp_EKRV15-peLufcDz4ArjAaYITIjarXbkAQIQhTKk5Aj2DBMk4LdPpnPwf9GFcIIYwJJiXtgZdxY3QKvnUajpYqKJ1McDE5HaG3cNGkoD7fP-ZL18KZitHtVHK-hVO1NyFC6wN8do3T3Wm29MnvfJNUJ1-CM6uaaPrf8wIs7sbz0UM2fbqfjIbTTNOCi4yQXIuyQqZSlLNKF4aXNasLwXleVCw3lS0KxqytSq0oKVmtTc3yWohKUI0EvQDXx7-b4F-3Jia58tvQdpGScIJ4F4LyjhocKR18jMFYuQlurcJeYiQP_clDf_Knv04QR-HNNWb_Dy2Ht4-TX_cLKy91_A</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Pain, Sophie L.</creator><creator>Khorani, Edris</creator><creator>Niewelt, Tim</creator><creator>Wratten, Ailish</creator><creator>Paez Fajardo, Galo J.</creator><creator>Winfield, Ben P.</creator><creator>Bonilla, Ruy S.</creator><creator>Walker, Marc</creator><creator>Piper, Louis F. J.</creator><creator>Grant, Nicholas E.</creator><creator>Murphy, John D.</creator><general>John Wiley & Sons, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0993-5972</orcidid></search><sort><creationdate>20221001</creationdate><title>Electronic Characteristics of Ultra‐Thin Passivation Layers for Silicon Photovoltaics</title><author>Pain, Sophie L. ; Khorani, Edris ; Niewelt, Tim ; Wratten, Ailish ; Paez Fajardo, Galo J. ; Winfield, Ben P. ; Bonilla, Ruy S. ; Walker, Marc ; Piper, Louis F. J. ; Grant, Nicholas E. ; Murphy, John D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3579-224c98b0eba376bc5e78d6d597745b64ebf5566ffb8ca3286dced64d99b93c093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aluminum oxide</topic><topic>Annealing</topic><topic>Atomic layer deposition</topic><topic>Atomic layer epitaxy</topic><topic>Current carriers</topic><topic>dielectrics</topic><topic>Electric contacts</topic><topic>Hafnium oxide</topic><topic>Interlayers</topic><topic>passivation</topic><topic>Passivity</topic><topic>Photovoltaic cells</topic><topic>silicon</topic><topic>Silicon dioxide</topic><topic>Solar cells</topic><topic>Temperature dependence</topic><topic>Thickness</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pain, Sophie L.</creatorcontrib><creatorcontrib>Khorani, Edris</creatorcontrib><creatorcontrib>Niewelt, Tim</creatorcontrib><creatorcontrib>Wratten, Ailish</creatorcontrib><creatorcontrib>Paez Fajardo, Galo J.</creatorcontrib><creatorcontrib>Winfield, Ben P.</creatorcontrib><creatorcontrib>Bonilla, Ruy S.</creatorcontrib><creatorcontrib>Walker, Marc</creatorcontrib><creatorcontrib>Piper, Louis F. J.</creatorcontrib><creatorcontrib>Grant, Nicholas E.</creatorcontrib><creatorcontrib>Murphy, John D.</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced materials interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pain, Sophie L.</au><au>Khorani, Edris</au><au>Niewelt, Tim</au><au>Wratten, Ailish</au><au>Paez Fajardo, Galo J.</au><au>Winfield, Ben P.</au><au>Bonilla, Ruy S.</au><au>Walker, Marc</au><au>Piper, Louis F. J.</au><au>Grant, Nicholas E.</au><au>Murphy, John D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electronic Characteristics of Ultra‐Thin Passivation Layers for Silicon Photovoltaics</atitle><jtitle>Advanced materials interfaces</jtitle><date>2022-10-01</date><risdate>2022</risdate><volume>9</volume><issue>28</issue><epage>n/a</epage><issn>2196-7350</issn><eissn>2196-7350</eissn><abstract>Surface passivating thin films are crucial for limiting the electrical losses during charge carrier collection in silicon photovoltaic devices. Certain dielectric coatings of more than 10 nm provide excellent surface passivation, and ultra‐thin (<2 nm) dielectric layers can serve as interlayers in passivating contacts. Here, ultra‐thin passivating films of SiO2, Al2O3, and HfO2 are created via plasma‐enhanced atomic layer deposition and annealing. It is found that thin negatively charged HfO2 layers exhibit excellent passivation properties—exceeding those of SiO2 and Al2O3—with 0.9 nm HfO2 annealed at 450 °C providing a surface recombination velocity of 18.6 cm s−1. The passivation quality is dependent on annealing temperature and layer thickness, and optimum passivation is achieved with HfO2 layers annealed at 450 °C measured to be 2.2–3.3 nm thick which give surface recombination velocities ≤2.5 cm s−1 and J0 values of ≈14 fA cm−2. The superior passivation quality of HfO2 nanolayers makes them a promising candidate for future passivating contacts in high‐efficiency silicon solar cells.
Ultra‐thin SiO2, Al2O3, and HfO2 layers are produced via plasma‐enhanced atomic layer deposition, with negatively charged HfO2 providing excellent passivation. Passivation is temperature and thickness‐dependent. Optimum passivation with 2.2–3.3 nm HfO2 layers annealed at 450 °C gives surface recombination velocities ≤2.5 cm s−1 and J0 values ≈14 fA cm−2, thus demonstrating HfO2's promise as an ultra‐thin passivating layer.</abstract><cop>Weinheim</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/admi.202201339</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-0993-5972</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2196-7350 |
ispartof | Advanced materials interfaces, 2022-10, Vol.9 (28), p.n/a |
issn | 2196-7350 2196-7350 |
language | eng |
recordid | cdi_proquest_journals_2720757904 |
source | Access via Wiley Online Library |
subjects | Aluminum oxide Annealing Atomic layer deposition Atomic layer epitaxy Current carriers dielectrics Electric contacts Hafnium oxide Interlayers passivation Passivity Photovoltaic cells silicon Silicon dioxide Solar cells Temperature dependence Thickness Thin films |
title | Electronic Characteristics of Ultra‐Thin Passivation Layers for Silicon Photovoltaics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T22%3A12%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electronic%20Characteristics%20of%20Ultra%E2%80%90Thin%20Passivation%20Layers%20for%20Silicon%20Photovoltaics&rft.jtitle=Advanced%20materials%20interfaces&rft.au=Pain,%20Sophie%20L.&rft.date=2022-10-01&rft.volume=9&rft.issue=28&rft.epage=n/a&rft.issn=2196-7350&rft.eissn=2196-7350&rft_id=info:doi/10.1002/admi.202201339&rft_dat=%3Cproquest_cross%3E2720757904%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2720757904&rft_id=info:pmid/&rfr_iscdi=true |