Electronic Characteristics of Ultra‐Thin Passivation Layers for Silicon Photovoltaics

Surface passivating thin films are crucial for limiting the electrical losses during charge carrier collection in silicon photovoltaic devices. Certain dielectric coatings of more than 10 nm provide excellent surface passivation, and ultra‐thin (

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials interfaces 2022-10, Vol.9 (28), p.n/a
Hauptverfasser: Pain, Sophie L., Khorani, Edris, Niewelt, Tim, Wratten, Ailish, Paez Fajardo, Galo J., Winfield, Ben P., Bonilla, Ruy S., Walker, Marc, Piper, Louis F. J., Grant, Nicholas E., Murphy, John D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 28
container_start_page
container_title Advanced materials interfaces
container_volume 9
creator Pain, Sophie L.
Khorani, Edris
Niewelt, Tim
Wratten, Ailish
Paez Fajardo, Galo J.
Winfield, Ben P.
Bonilla, Ruy S.
Walker, Marc
Piper, Louis F. J.
Grant, Nicholas E.
Murphy, John D.
description Surface passivating thin films are crucial for limiting the electrical losses during charge carrier collection in silicon photovoltaic devices. Certain dielectric coatings of more than 10 nm provide excellent surface passivation, and ultra‐thin (
doi_str_mv 10.1002/admi.202201339
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2720757904</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2720757904</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3579-224c98b0eba376bc5e78d6d597745b64ebf5566ffb8ca3286dced64d99b93c093</originalsourceid><addsrcrecordid>eNqFkM1KAzEURoMoWLRb1wHXU_Mzk0yWpVYtVCzY4jJkMglNmU5qkla68xF8Rp_EKRV15-peLufcDz4ArjAaYITIjarXbkAQIQhTKk5Aj2DBMk4LdPpnPwf9GFcIIYwJJiXtgZdxY3QKvnUajpYqKJ1McDE5HaG3cNGkoD7fP-ZL18KZitHtVHK-hVO1NyFC6wN8do3T3Wm29MnvfJNUJ1-CM6uaaPrf8wIs7sbz0UM2fbqfjIbTTNOCi4yQXIuyQqZSlLNKF4aXNasLwXleVCw3lS0KxqytSq0oKVmtTc3yWohKUI0EvQDXx7-b4F-3Jia58tvQdpGScIJ4F4LyjhocKR18jMFYuQlurcJeYiQP_clDf_Knv04QR-HNNWb_Dy2Ht4-TX_cLKy91_A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2720757904</pqid></control><display><type>article</type><title>Electronic Characteristics of Ultra‐Thin Passivation Layers for Silicon Photovoltaics</title><source>Access via Wiley Online Library</source><creator>Pain, Sophie L. ; Khorani, Edris ; Niewelt, Tim ; Wratten, Ailish ; Paez Fajardo, Galo J. ; Winfield, Ben P. ; Bonilla, Ruy S. ; Walker, Marc ; Piper, Louis F. J. ; Grant, Nicholas E. ; Murphy, John D.</creator><creatorcontrib>Pain, Sophie L. ; Khorani, Edris ; Niewelt, Tim ; Wratten, Ailish ; Paez Fajardo, Galo J. ; Winfield, Ben P. ; Bonilla, Ruy S. ; Walker, Marc ; Piper, Louis F. J. ; Grant, Nicholas E. ; Murphy, John D.</creatorcontrib><description>Surface passivating thin films are crucial for limiting the electrical losses during charge carrier collection in silicon photovoltaic devices. Certain dielectric coatings of more than 10 nm provide excellent surface passivation, and ultra‐thin (&lt;2 nm) dielectric layers can serve as interlayers in passivating contacts. Here, ultra‐thin passivating films of SiO2, Al2O3, and HfO2 are created via plasma‐enhanced atomic layer deposition and annealing. It is found that thin negatively charged HfO2 layers exhibit excellent passivation properties—exceeding those of SiO2 and Al2O3—with 0.9 nm HfO2 annealed at 450 °C providing a surface recombination velocity of 18.6 cm s−1. The passivation quality is dependent on annealing temperature and layer thickness, and optimum passivation is achieved with HfO2 layers annealed at 450 °C measured to be 2.2–3.3 nm thick which give surface recombination velocities ≤2.5 cm s−1 and J0 values of ≈14 fA cm−2. The superior passivation quality of HfO2 nanolayers makes them a promising candidate for future passivating contacts in high‐efficiency silicon solar cells. Ultra‐thin SiO2, Al2O3, and HfO2 layers are produced via plasma‐enhanced atomic layer deposition, with negatively charged HfO2 providing excellent passivation. Passivation is temperature and thickness‐dependent. Optimum passivation with 2.2–3.3 nm HfO2 layers annealed at 450 °C gives surface recombination velocities ≤2.5 cm s−1 and J0 values ≈14 fA cm−2, thus demonstrating HfO2's promise as an ultra‐thin passivating layer.</description><identifier>ISSN: 2196-7350</identifier><identifier>EISSN: 2196-7350</identifier><identifier>DOI: 10.1002/admi.202201339</identifier><language>eng</language><publisher>Weinheim: John Wiley &amp; Sons, Inc</publisher><subject>Aluminum oxide ; Annealing ; Atomic layer deposition ; Atomic layer epitaxy ; Current carriers ; dielectrics ; Electric contacts ; Hafnium oxide ; Interlayers ; passivation ; Passivity ; Photovoltaic cells ; silicon ; Silicon dioxide ; Solar cells ; Temperature dependence ; Thickness ; Thin films</subject><ispartof>Advanced materials interfaces, 2022-10, Vol.9 (28), p.n/a</ispartof><rights>2022 The Authors. Advanced Materials Interfaces published by Wiley‐VCH GmbH</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3579-224c98b0eba376bc5e78d6d597745b64ebf5566ffb8ca3286dced64d99b93c093</citedby><cites>FETCH-LOGICAL-c3579-224c98b0eba376bc5e78d6d597745b64ebf5566ffb8ca3286dced64d99b93c093</cites><orcidid>0000-0003-0993-5972</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadmi.202201339$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadmi.202201339$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,45579,45580</link.rule.ids></links><search><creatorcontrib>Pain, Sophie L.</creatorcontrib><creatorcontrib>Khorani, Edris</creatorcontrib><creatorcontrib>Niewelt, Tim</creatorcontrib><creatorcontrib>Wratten, Ailish</creatorcontrib><creatorcontrib>Paez Fajardo, Galo J.</creatorcontrib><creatorcontrib>Winfield, Ben P.</creatorcontrib><creatorcontrib>Bonilla, Ruy S.</creatorcontrib><creatorcontrib>Walker, Marc</creatorcontrib><creatorcontrib>Piper, Louis F. J.</creatorcontrib><creatorcontrib>Grant, Nicholas E.</creatorcontrib><creatorcontrib>Murphy, John D.</creatorcontrib><title>Electronic Characteristics of Ultra‐Thin Passivation Layers for Silicon Photovoltaics</title><title>Advanced materials interfaces</title><description>Surface passivating thin films are crucial for limiting the electrical losses during charge carrier collection in silicon photovoltaic devices. Certain dielectric coatings of more than 10 nm provide excellent surface passivation, and ultra‐thin (&lt;2 nm) dielectric layers can serve as interlayers in passivating contacts. Here, ultra‐thin passivating films of SiO2, Al2O3, and HfO2 are created via plasma‐enhanced atomic layer deposition and annealing. It is found that thin negatively charged HfO2 layers exhibit excellent passivation properties—exceeding those of SiO2 and Al2O3—with 0.9 nm HfO2 annealed at 450 °C providing a surface recombination velocity of 18.6 cm s−1. The passivation quality is dependent on annealing temperature and layer thickness, and optimum passivation is achieved with HfO2 layers annealed at 450 °C measured to be 2.2–3.3 nm thick which give surface recombination velocities ≤2.5 cm s−1 and J0 values of ≈14 fA cm−2. The superior passivation quality of HfO2 nanolayers makes them a promising candidate for future passivating contacts in high‐efficiency silicon solar cells. Ultra‐thin SiO2, Al2O3, and HfO2 layers are produced via plasma‐enhanced atomic layer deposition, with negatively charged HfO2 providing excellent passivation. Passivation is temperature and thickness‐dependent. Optimum passivation with 2.2–3.3 nm HfO2 layers annealed at 450 °C gives surface recombination velocities ≤2.5 cm s−1 and J0 values ≈14 fA cm−2, thus demonstrating HfO2's promise as an ultra‐thin passivating layer.</description><subject>Aluminum oxide</subject><subject>Annealing</subject><subject>Atomic layer deposition</subject><subject>Atomic layer epitaxy</subject><subject>Current carriers</subject><subject>dielectrics</subject><subject>Electric contacts</subject><subject>Hafnium oxide</subject><subject>Interlayers</subject><subject>passivation</subject><subject>Passivity</subject><subject>Photovoltaic cells</subject><subject>silicon</subject><subject>Silicon dioxide</subject><subject>Solar cells</subject><subject>Temperature dependence</subject><subject>Thickness</subject><subject>Thin films</subject><issn>2196-7350</issn><issn>2196-7350</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkM1KAzEURoMoWLRb1wHXU_Mzk0yWpVYtVCzY4jJkMglNmU5qkla68xF8Rp_EKRV15-peLufcDz4ArjAaYITIjarXbkAQIQhTKk5Aj2DBMk4LdPpnPwf9GFcIIYwJJiXtgZdxY3QKvnUajpYqKJ1McDE5HaG3cNGkoD7fP-ZL18KZitHtVHK-hVO1NyFC6wN8do3T3Wm29MnvfJNUJ1-CM6uaaPrf8wIs7sbz0UM2fbqfjIbTTNOCi4yQXIuyQqZSlLNKF4aXNasLwXleVCw3lS0KxqytSq0oKVmtTc3yWohKUI0EvQDXx7-b4F-3Jia58tvQdpGScIJ4F4LyjhocKR18jMFYuQlurcJeYiQP_clDf_Knv04QR-HNNWb_Dy2Ht4-TX_cLKy91_A</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Pain, Sophie L.</creator><creator>Khorani, Edris</creator><creator>Niewelt, Tim</creator><creator>Wratten, Ailish</creator><creator>Paez Fajardo, Galo J.</creator><creator>Winfield, Ben P.</creator><creator>Bonilla, Ruy S.</creator><creator>Walker, Marc</creator><creator>Piper, Louis F. J.</creator><creator>Grant, Nicholas E.</creator><creator>Murphy, John D.</creator><general>John Wiley &amp; Sons, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0993-5972</orcidid></search><sort><creationdate>20221001</creationdate><title>Electronic Characteristics of Ultra‐Thin Passivation Layers for Silicon Photovoltaics</title><author>Pain, Sophie L. ; Khorani, Edris ; Niewelt, Tim ; Wratten, Ailish ; Paez Fajardo, Galo J. ; Winfield, Ben P. ; Bonilla, Ruy S. ; Walker, Marc ; Piper, Louis F. J. ; Grant, Nicholas E. ; Murphy, John D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3579-224c98b0eba376bc5e78d6d597745b64ebf5566ffb8ca3286dced64d99b93c093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aluminum oxide</topic><topic>Annealing</topic><topic>Atomic layer deposition</topic><topic>Atomic layer epitaxy</topic><topic>Current carriers</topic><topic>dielectrics</topic><topic>Electric contacts</topic><topic>Hafnium oxide</topic><topic>Interlayers</topic><topic>passivation</topic><topic>Passivity</topic><topic>Photovoltaic cells</topic><topic>silicon</topic><topic>Silicon dioxide</topic><topic>Solar cells</topic><topic>Temperature dependence</topic><topic>Thickness</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pain, Sophie L.</creatorcontrib><creatorcontrib>Khorani, Edris</creatorcontrib><creatorcontrib>Niewelt, Tim</creatorcontrib><creatorcontrib>Wratten, Ailish</creatorcontrib><creatorcontrib>Paez Fajardo, Galo J.</creatorcontrib><creatorcontrib>Winfield, Ben P.</creatorcontrib><creatorcontrib>Bonilla, Ruy S.</creatorcontrib><creatorcontrib>Walker, Marc</creatorcontrib><creatorcontrib>Piper, Louis F. J.</creatorcontrib><creatorcontrib>Grant, Nicholas E.</creatorcontrib><creatorcontrib>Murphy, John D.</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced materials interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pain, Sophie L.</au><au>Khorani, Edris</au><au>Niewelt, Tim</au><au>Wratten, Ailish</au><au>Paez Fajardo, Galo J.</au><au>Winfield, Ben P.</au><au>Bonilla, Ruy S.</au><au>Walker, Marc</au><au>Piper, Louis F. J.</au><au>Grant, Nicholas E.</au><au>Murphy, John D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electronic Characteristics of Ultra‐Thin Passivation Layers for Silicon Photovoltaics</atitle><jtitle>Advanced materials interfaces</jtitle><date>2022-10-01</date><risdate>2022</risdate><volume>9</volume><issue>28</issue><epage>n/a</epage><issn>2196-7350</issn><eissn>2196-7350</eissn><abstract>Surface passivating thin films are crucial for limiting the electrical losses during charge carrier collection in silicon photovoltaic devices. Certain dielectric coatings of more than 10 nm provide excellent surface passivation, and ultra‐thin (&lt;2 nm) dielectric layers can serve as interlayers in passivating contacts. Here, ultra‐thin passivating films of SiO2, Al2O3, and HfO2 are created via plasma‐enhanced atomic layer deposition and annealing. It is found that thin negatively charged HfO2 layers exhibit excellent passivation properties—exceeding those of SiO2 and Al2O3—with 0.9 nm HfO2 annealed at 450 °C providing a surface recombination velocity of 18.6 cm s−1. The passivation quality is dependent on annealing temperature and layer thickness, and optimum passivation is achieved with HfO2 layers annealed at 450 °C measured to be 2.2–3.3 nm thick which give surface recombination velocities ≤2.5 cm s−1 and J0 values of ≈14 fA cm−2. The superior passivation quality of HfO2 nanolayers makes them a promising candidate for future passivating contacts in high‐efficiency silicon solar cells. Ultra‐thin SiO2, Al2O3, and HfO2 layers are produced via plasma‐enhanced atomic layer deposition, with negatively charged HfO2 providing excellent passivation. Passivation is temperature and thickness‐dependent. Optimum passivation with 2.2–3.3 nm HfO2 layers annealed at 450 °C gives surface recombination velocities ≤2.5 cm s−1 and J0 values ≈14 fA cm−2, thus demonstrating HfO2's promise as an ultra‐thin passivating layer.</abstract><cop>Weinheim</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/admi.202201339</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-0993-5972</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2196-7350
ispartof Advanced materials interfaces, 2022-10, Vol.9 (28), p.n/a
issn 2196-7350
2196-7350
language eng
recordid cdi_proquest_journals_2720757904
source Access via Wiley Online Library
subjects Aluminum oxide
Annealing
Atomic layer deposition
Atomic layer epitaxy
Current carriers
dielectrics
Electric contacts
Hafnium oxide
Interlayers
passivation
Passivity
Photovoltaic cells
silicon
Silicon dioxide
Solar cells
Temperature dependence
Thickness
Thin films
title Electronic Characteristics of Ultra‐Thin Passivation Layers for Silicon Photovoltaics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T22%3A12%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electronic%20Characteristics%20of%20Ultra%E2%80%90Thin%20Passivation%20Layers%20for%20Silicon%20Photovoltaics&rft.jtitle=Advanced%20materials%20interfaces&rft.au=Pain,%20Sophie%20L.&rft.date=2022-10-01&rft.volume=9&rft.issue=28&rft.epage=n/a&rft.issn=2196-7350&rft.eissn=2196-7350&rft_id=info:doi/10.1002/admi.202201339&rft_dat=%3Cproquest_cross%3E2720757904%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2720757904&rft_id=info:pmid/&rfr_iscdi=true