Covalent functionalization of black phosphorus nanosheets via insensitive glycidyl azide polymer with durable stability

Covalent functionalization of black phosphorus nanosheets (PNs) exhibit relatively stability, but one unpaired electron still retains in the phosphorus atom, rendering unsaturated coordination state and hampering the passivation effect. Azide functionalization achieves the five-coordinate bonding of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science 2022-09, Vol.57 (36), p.17265-17276
Hauptverfasser: Li, Shengnan, Jiao, Yuke, Ding, Shanjun, Yang, Desheng, Niu, Ziteng, Li, Guoping, Wang, Xiaoqing, Luo, Yunjun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 17276
container_issue 36
container_start_page 17265
container_title Journal of materials science
container_volume 57
creator Li, Shengnan
Jiao, Yuke
Ding, Shanjun
Yang, Desheng
Niu, Ziteng
Li, Guoping
Wang, Xiaoqing
Luo, Yunjun
description Covalent functionalization of black phosphorus nanosheets (PNs) exhibit relatively stability, but one unpaired electron still retains in the phosphorus atom, rendering unsaturated coordination state and hampering the passivation effect. Azide functionalization achieves the five-coordinate bonding of phosphorus atoms, making PNs completely passivated. But a molecule with an azide group is extremely dangerous owing to explosive and corrosive nature. Herein, insensitive glycidyl azide polymer, GAP, was the first used for covalent azide functionalization of PNs to generate GAP-PN of P=N bond with the best stability. The structure of GAP-PN was comprehensively confirmed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), the atomic force microscopy (AFM), Raman spectra, solid-state 31 P nuclear magnetic resonance spectroscopy ( 31 P NMR), x-ray photoelectron spectroscopy (XPS) and the elemental analysis. The average statistical size and the thickness of GAP-PN is 2.46 ± 1.51um and10.4 nm.The stabilization mechanism was explored via XPS, and the mechanism was attributed to the chemical modification of the surface of PNs with P=N bond formation, which inhibits the formation of P x O y . The stability properties of GAP-PN were evaluated by XPS and the UV/Vis spectroscopic. The experimental results show that the degradation ratio of GAP-PN decreased from 54.9 to 8.8% of PNs after 60 days. In addition, compared with PNs, the peak temperature corresponding to exothermic phase( T P ) of GAP-PN decrease by 44.6 °C and heat released during the decomposition for GAP-PN is up to is 3154.9 J/g, which is 6.09 times higher than that of PNs. This work provides a novel strategy for the stability study of PNs, which is supposed to possess significant potential in the nanocomposite energetic materials applications field.
doi_str_mv 10.1007/s10853-022-07678-8
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2720677138</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A720833844</galeid><sourcerecordid>A720833844</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-2e61bc87adef88921046dcffa47401fab90bd0588235f21972375b43a50341e3</originalsourceid><addsrcrecordid>eNp9kU9rHCEYh4fQQrZpv0BPQk89TOq_Gd1jWNomEAi0uYvj6K6pq1tfZ9PJp4_bKZRcgoiiz_Py6q9pPhJ8STAWX4Bg2bEWU9pi0QvZyrNmRTrBWi4xe9Os8OmK8p6cN-8AHjDGnaBk1Txu0lEHGwtyUzTFp6iDf9KnDUoODUGbX-iwS1BnngBFHRPsrC2Ajl4jH8FG8MUfLdqG2fhxDkg_-dGiQwrz3mb06MsOjVPWQ7AIih588GV-37x1OoD98G-9aO6_fb3fXLe3d99vNle3rWGUlpbangxGCj1aJ-WaEsz70TinueCYOD2s8TDiTkrKOkfJWlAmuoEz3WHGiWUXzael7CGn35OFoh7SlOsbQVFBcS8EYbJSlwu1rV-hfHSpZG3qGO3emxSt8_X8qgqSMcl5FT6_ECpT7J-y1ROAuvn54yVLF9bkBJCtU4fs9zrPimB1Ck8t4amakPobnjp1xBYJKhy3Nv_v-xXrGXf3nig</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2720677138</pqid></control><display><type>article</type><title>Covalent functionalization of black phosphorus nanosheets via insensitive glycidyl azide polymer with durable stability</title><source>SpringerNature Journals</source><creator>Li, Shengnan ; Jiao, Yuke ; Ding, Shanjun ; Yang, Desheng ; Niu, Ziteng ; Li, Guoping ; Wang, Xiaoqing ; Luo, Yunjun</creator><creatorcontrib>Li, Shengnan ; Jiao, Yuke ; Ding, Shanjun ; Yang, Desheng ; Niu, Ziteng ; Li, Guoping ; Wang, Xiaoqing ; Luo, Yunjun</creatorcontrib><description>Covalent functionalization of black phosphorus nanosheets (PNs) exhibit relatively stability, but one unpaired electron still retains in the phosphorus atom, rendering unsaturated coordination state and hampering the passivation effect. Azide functionalization achieves the five-coordinate bonding of phosphorus atoms, making PNs completely passivated. But a molecule with an azide group is extremely dangerous owing to explosive and corrosive nature. Herein, insensitive glycidyl azide polymer, GAP, was the first used for covalent azide functionalization of PNs to generate GAP-PN of P=N bond with the best stability. The structure of GAP-PN was comprehensively confirmed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), the atomic force microscopy (AFM), Raman spectra, solid-state 31 P nuclear magnetic resonance spectroscopy ( 31 P NMR), x-ray photoelectron spectroscopy (XPS) and the elemental analysis. The average statistical size and the thickness of GAP-PN is 2.46 ± 1.51um and10.4 nm.The stabilization mechanism was explored via XPS, and the mechanism was attributed to the chemical modification of the surface of PNs with P=N bond formation, which inhibits the formation of P x O y . The stability properties of GAP-PN were evaluated by XPS and the UV/Vis spectroscopic. The experimental results show that the degradation ratio of GAP-PN decreased from 54.9 to 8.8% of PNs after 60 days. In addition, compared with PNs, the peak temperature corresponding to exothermic phase( T P ) of GAP-PN decrease by 44.6 °C and heat released during the decomposition for GAP-PN is up to is 3154.9 J/g, which is 6.09 times higher than that of PNs. This work provides a novel strategy for the stability study of PNs, which is supposed to possess significant potential in the nanocomposite energetic materials applications field.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-022-07678-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Atomic force microscopy ; Characterization and Evaluation of Materials ; Chemical bonds ; Chemical Routes to Materials ; Chemistry and Materials Science ; Classical Mechanics ; Covalence ; Crystallography and Scattering Methods ; Electron microscopy ; Energetic materials ; Glycidyl azide polymer ; Materials Science ; Microscopy ; Nanocomposites ; Nanosheets ; NMR ; NMR spectroscopy ; Nuclear magnetic resonance ; Nuclear magnetic resonance spectroscopy ; Phosphorus ; Photoelectrons ; Polymer industry ; Polymer Sciences ; Polymers ; Raman spectra ; Raman spectroscopy ; Solid Mechanics ; Spectrum analysis ; Stability analysis ; Structural stability ; X ray photoelectron spectroscopy ; X-ray spectroscopy</subject><ispartof>Journal of materials science, 2022-09, Vol.57 (36), p.17265-17276</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>COPYRIGHT 2022 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-2e61bc87adef88921046dcffa47401fab90bd0588235f21972375b43a50341e3</citedby><cites>FETCH-LOGICAL-c322t-2e61bc87adef88921046dcffa47401fab90bd0588235f21972375b43a50341e3</cites><orcidid>0000-0002-3745-7480</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-022-07678-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-022-07678-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Li, Shengnan</creatorcontrib><creatorcontrib>Jiao, Yuke</creatorcontrib><creatorcontrib>Ding, Shanjun</creatorcontrib><creatorcontrib>Yang, Desheng</creatorcontrib><creatorcontrib>Niu, Ziteng</creatorcontrib><creatorcontrib>Li, Guoping</creatorcontrib><creatorcontrib>Wang, Xiaoqing</creatorcontrib><creatorcontrib>Luo, Yunjun</creatorcontrib><title>Covalent functionalization of black phosphorus nanosheets via insensitive glycidyl azide polymer with durable stability</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>Covalent functionalization of black phosphorus nanosheets (PNs) exhibit relatively stability, but one unpaired electron still retains in the phosphorus atom, rendering unsaturated coordination state and hampering the passivation effect. Azide functionalization achieves the five-coordinate bonding of phosphorus atoms, making PNs completely passivated. But a molecule with an azide group is extremely dangerous owing to explosive and corrosive nature. Herein, insensitive glycidyl azide polymer, GAP, was the first used for covalent azide functionalization of PNs to generate GAP-PN of P=N bond with the best stability. The structure of GAP-PN was comprehensively confirmed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), the atomic force microscopy (AFM), Raman spectra, solid-state 31 P nuclear magnetic resonance spectroscopy ( 31 P NMR), x-ray photoelectron spectroscopy (XPS) and the elemental analysis. The average statistical size and the thickness of GAP-PN is 2.46 ± 1.51um and10.4 nm.The stabilization mechanism was explored via XPS, and the mechanism was attributed to the chemical modification of the surface of PNs with P=N bond formation, which inhibits the formation of P x O y . The stability properties of GAP-PN were evaluated by XPS and the UV/Vis spectroscopic. The experimental results show that the degradation ratio of GAP-PN decreased from 54.9 to 8.8% of PNs after 60 days. In addition, compared with PNs, the peak temperature corresponding to exothermic phase( T P ) of GAP-PN decrease by 44.6 °C and heat released during the decomposition for GAP-PN is up to is 3154.9 J/g, which is 6.09 times higher than that of PNs. This work provides a novel strategy for the stability study of PNs, which is supposed to possess significant potential in the nanocomposite energetic materials applications field.</description><subject>Atomic force microscopy</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical bonds</subject><subject>Chemical Routes to Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Covalence</subject><subject>Crystallography and Scattering Methods</subject><subject>Electron microscopy</subject><subject>Energetic materials</subject><subject>Glycidyl azide polymer</subject><subject>Materials Science</subject><subject>Microscopy</subject><subject>Nanocomposites</subject><subject>Nanosheets</subject><subject>NMR</subject><subject>NMR spectroscopy</subject><subject>Nuclear magnetic resonance</subject><subject>Nuclear magnetic resonance spectroscopy</subject><subject>Phosphorus</subject><subject>Photoelectrons</subject><subject>Polymer industry</subject><subject>Polymer Sciences</subject><subject>Polymers</subject><subject>Raman spectra</subject><subject>Raman spectroscopy</subject><subject>Solid Mechanics</subject><subject>Spectrum analysis</subject><subject>Stability analysis</subject><subject>Structural stability</subject><subject>X ray photoelectron spectroscopy</subject><subject>X-ray spectroscopy</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kU9rHCEYh4fQQrZpv0BPQk89TOq_Gd1jWNomEAi0uYvj6K6pq1tfZ9PJp4_bKZRcgoiiz_Py6q9pPhJ8STAWX4Bg2bEWU9pi0QvZyrNmRTrBWi4xe9Os8OmK8p6cN-8AHjDGnaBk1Txu0lEHGwtyUzTFp6iDf9KnDUoODUGbX-iwS1BnngBFHRPsrC2Ajl4jH8FG8MUfLdqG2fhxDkg_-dGiQwrz3mb06MsOjVPWQ7AIih588GV-37x1OoD98G-9aO6_fb3fXLe3d99vNle3rWGUlpbangxGCj1aJ-WaEsz70TinueCYOD2s8TDiTkrKOkfJWlAmuoEz3WHGiWUXzael7CGn35OFoh7SlOsbQVFBcS8EYbJSlwu1rV-hfHSpZG3qGO3emxSt8_X8qgqSMcl5FT6_ECpT7J-y1ROAuvn54yVLF9bkBJCtU4fs9zrPimB1Ck8t4amakPobnjp1xBYJKhy3Nv_v-xXrGXf3nig</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Li, Shengnan</creator><creator>Jiao, Yuke</creator><creator>Ding, Shanjun</creator><creator>Yang, Desheng</creator><creator>Niu, Ziteng</creator><creator>Li, Guoping</creator><creator>Wang, Xiaoqing</creator><creator>Luo, Yunjun</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-3745-7480</orcidid></search><sort><creationdate>20220901</creationdate><title>Covalent functionalization of black phosphorus nanosheets via insensitive glycidyl azide polymer with durable stability</title><author>Li, Shengnan ; Jiao, Yuke ; Ding, Shanjun ; Yang, Desheng ; Niu, Ziteng ; Li, Guoping ; Wang, Xiaoqing ; Luo, Yunjun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-2e61bc87adef88921046dcffa47401fab90bd0588235f21972375b43a50341e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Atomic force microscopy</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical bonds</topic><topic>Chemical Routes to Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Covalence</topic><topic>Crystallography and Scattering Methods</topic><topic>Electron microscopy</topic><topic>Energetic materials</topic><topic>Glycidyl azide polymer</topic><topic>Materials Science</topic><topic>Microscopy</topic><topic>Nanocomposites</topic><topic>Nanosheets</topic><topic>NMR</topic><topic>NMR spectroscopy</topic><topic>Nuclear magnetic resonance</topic><topic>Nuclear magnetic resonance spectroscopy</topic><topic>Phosphorus</topic><topic>Photoelectrons</topic><topic>Polymer industry</topic><topic>Polymer Sciences</topic><topic>Polymers</topic><topic>Raman spectra</topic><topic>Raman spectroscopy</topic><topic>Solid Mechanics</topic><topic>Spectrum analysis</topic><topic>Stability analysis</topic><topic>Structural stability</topic><topic>X ray photoelectron spectroscopy</topic><topic>X-ray spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Shengnan</creatorcontrib><creatorcontrib>Jiao, Yuke</creatorcontrib><creatorcontrib>Ding, Shanjun</creatorcontrib><creatorcontrib>Yang, Desheng</creatorcontrib><creatorcontrib>Niu, Ziteng</creatorcontrib><creatorcontrib>Li, Guoping</creatorcontrib><creatorcontrib>Wang, Xiaoqing</creatorcontrib><creatorcontrib>Luo, Yunjun</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Shengnan</au><au>Jiao, Yuke</au><au>Ding, Shanjun</au><au>Yang, Desheng</au><au>Niu, Ziteng</au><au>Li, Guoping</au><au>Wang, Xiaoqing</au><au>Luo, Yunjun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Covalent functionalization of black phosphorus nanosheets via insensitive glycidyl azide polymer with durable stability</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2022-09-01</date><risdate>2022</risdate><volume>57</volume><issue>36</issue><spage>17265</spage><epage>17276</epage><pages>17265-17276</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>Covalent functionalization of black phosphorus nanosheets (PNs) exhibit relatively stability, but one unpaired electron still retains in the phosphorus atom, rendering unsaturated coordination state and hampering the passivation effect. Azide functionalization achieves the five-coordinate bonding of phosphorus atoms, making PNs completely passivated. But a molecule with an azide group is extremely dangerous owing to explosive and corrosive nature. Herein, insensitive glycidyl azide polymer, GAP, was the first used for covalent azide functionalization of PNs to generate GAP-PN of P=N bond with the best stability. The structure of GAP-PN was comprehensively confirmed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), the atomic force microscopy (AFM), Raman spectra, solid-state 31 P nuclear magnetic resonance spectroscopy ( 31 P NMR), x-ray photoelectron spectroscopy (XPS) and the elemental analysis. The average statistical size and the thickness of GAP-PN is 2.46 ± 1.51um and10.4 nm.The stabilization mechanism was explored via XPS, and the mechanism was attributed to the chemical modification of the surface of PNs with P=N bond formation, which inhibits the formation of P x O y . The stability properties of GAP-PN were evaluated by XPS and the UV/Vis spectroscopic. The experimental results show that the degradation ratio of GAP-PN decreased from 54.9 to 8.8% of PNs after 60 days. In addition, compared with PNs, the peak temperature corresponding to exothermic phase( T P ) of GAP-PN decrease by 44.6 °C and heat released during the decomposition for GAP-PN is up to is 3154.9 J/g, which is 6.09 times higher than that of PNs. This work provides a novel strategy for the stability study of PNs, which is supposed to possess significant potential in the nanocomposite energetic materials applications field.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-022-07678-8</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-3745-7480</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-2461
ispartof Journal of materials science, 2022-09, Vol.57 (36), p.17265-17276
issn 0022-2461
1573-4803
language eng
recordid cdi_proquest_journals_2720677138
source SpringerNature Journals
subjects Atomic force microscopy
Characterization and Evaluation of Materials
Chemical bonds
Chemical Routes to Materials
Chemistry and Materials Science
Classical Mechanics
Covalence
Crystallography and Scattering Methods
Electron microscopy
Energetic materials
Glycidyl azide polymer
Materials Science
Microscopy
Nanocomposites
Nanosheets
NMR
NMR spectroscopy
Nuclear magnetic resonance
Nuclear magnetic resonance spectroscopy
Phosphorus
Photoelectrons
Polymer industry
Polymer Sciences
Polymers
Raman spectra
Raman spectroscopy
Solid Mechanics
Spectrum analysis
Stability analysis
Structural stability
X ray photoelectron spectroscopy
X-ray spectroscopy
title Covalent functionalization of black phosphorus nanosheets via insensitive glycidyl azide polymer with durable stability
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T17%3A11%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Covalent%20functionalization%20of%20black%20phosphorus%20nanosheets%20via%20insensitive%20glycidyl%20azide%20polymer%20with%20durable%20stability&rft.jtitle=Journal%20of%20materials%20science&rft.au=Li,%20Shengnan&rft.date=2022-09-01&rft.volume=57&rft.issue=36&rft.spage=17265&rft.epage=17276&rft.pages=17265-17276&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-022-07678-8&rft_dat=%3Cgale_proqu%3EA720833844%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2720677138&rft_id=info:pmid/&rft_galeid=A720833844&rfr_iscdi=true