Spatio-temporal Motion Planning for Autonomous Vehicles with Trapezoidal Prism Corridors and B\'{e}zier Curves

Safety-guaranteed motion planning is critical for self-driving cars to generate collision-free trajectories. A layered motion planning approach with decoupled path and speed planning is widely used for this purpose. This approach is prone to be suboptimal in the presence of dynamic obstacles. Spatia...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-09
Hauptverfasser: Deolasee, Srujan, Lin, Qin, Li, Jialun, Dolan, John M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Deolasee, Srujan
Lin, Qin
Li, Jialun
Dolan, John M
description Safety-guaranteed motion planning is critical for self-driving cars to generate collision-free trajectories. A layered motion planning approach with decoupled path and speed planning is widely used for this purpose. This approach is prone to be suboptimal in the presence of dynamic obstacles. Spatial-temporal approaches deal with path planning and speed planning simultaneously; however, the existing methods only support simple-shaped corridors like cuboids, which restrict the search space for optimization in complex scenarios. We propose to use trapezoidal prism-shaped corridors for optimization, which significantly enlarges the solution space compared to the existing cuboidal corridors-based method. Finally, a piecewise B\'{e}zier curve optimization is conducted in our proposed corridors. This formulation theoretically guarantees the safety of the continuous-time trajectory. We validate the efficiency and effectiveness of the proposed approach in numerical and CommonRoad simulations.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2720666680</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2720666680</sourcerecordid><originalsourceid>FETCH-proquest_journals_27206666803</originalsourceid><addsrcrecordid>eNqNi8GKwkAQRAdBUFb_ocGDp8A40ehVwy57WRBWPAlhMB0dSaZj94yCi_9uDn7A1qV41KueGpo0nSWruTEDNRa5aK1NtjSLRTpU_re1wVESsGmJbQ0_1KGHbW29d_4EFTGsYyBPDUWBPZ7dsUaBuwtn2LFt8UGu7I5bdtJATsyuJBawvoTNYfqHz4dDhjzyDWWk-pWtBcfv_lCTr89d_p20TNeIEooLRfbdVJil0VmXlU7_Z70AmqJKrw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2720666680</pqid></control><display><type>article</type><title>Spatio-temporal Motion Planning for Autonomous Vehicles with Trapezoidal Prism Corridors and B\'{e}zier Curves</title><source>Free E- Journals</source><creator>Deolasee, Srujan ; Lin, Qin ; Li, Jialun ; Dolan, John M</creator><creatorcontrib>Deolasee, Srujan ; Lin, Qin ; Li, Jialun ; Dolan, John M</creatorcontrib><description>Safety-guaranteed motion planning is critical for self-driving cars to generate collision-free trajectories. A layered motion planning approach with decoupled path and speed planning is widely used for this purpose. This approach is prone to be suboptimal in the presence of dynamic obstacles. Spatial-temporal approaches deal with path planning and speed planning simultaneously; however, the existing methods only support simple-shaped corridors like cuboids, which restrict the search space for optimization in complex scenarios. We propose to use trapezoidal prism-shaped corridors for optimization, which significantly enlarges the solution space compared to the existing cuboidal corridors-based method. Finally, a piecewise B\'{e}zier curve optimization is conducted in our proposed corridors. This formulation theoretically guarantees the safety of the continuous-time trajectory. We validate the efficiency and effectiveness of the proposed approach in numerical and CommonRoad simulations.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Autonomous cars ; Collision avoidance ; Collision dynamics ; Corridors ; Motion planning ; Optimization ; Safety ; Solution space ; Trajectory planning</subject><ispartof>arXiv.org, 2022-09</ispartof><rights>2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Deolasee, Srujan</creatorcontrib><creatorcontrib>Lin, Qin</creatorcontrib><creatorcontrib>Li, Jialun</creatorcontrib><creatorcontrib>Dolan, John M</creatorcontrib><title>Spatio-temporal Motion Planning for Autonomous Vehicles with Trapezoidal Prism Corridors and B\'{e}zier Curves</title><title>arXiv.org</title><description>Safety-guaranteed motion planning is critical for self-driving cars to generate collision-free trajectories. A layered motion planning approach with decoupled path and speed planning is widely used for this purpose. This approach is prone to be suboptimal in the presence of dynamic obstacles. Spatial-temporal approaches deal with path planning and speed planning simultaneously; however, the existing methods only support simple-shaped corridors like cuboids, which restrict the search space for optimization in complex scenarios. We propose to use trapezoidal prism-shaped corridors for optimization, which significantly enlarges the solution space compared to the existing cuboidal corridors-based method. Finally, a piecewise B\'{e}zier curve optimization is conducted in our proposed corridors. This formulation theoretically guarantees the safety of the continuous-time trajectory. We validate the efficiency and effectiveness of the proposed approach in numerical and CommonRoad simulations.</description><subject>Autonomous cars</subject><subject>Collision avoidance</subject><subject>Collision dynamics</subject><subject>Corridors</subject><subject>Motion planning</subject><subject>Optimization</subject><subject>Safety</subject><subject>Solution space</subject><subject>Trajectory planning</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNi8GKwkAQRAdBUFb_ocGDp8A40ehVwy57WRBWPAlhMB0dSaZj94yCi_9uDn7A1qV41KueGpo0nSWruTEDNRa5aK1NtjSLRTpU_re1wVESsGmJbQ0_1KGHbW29d_4EFTGsYyBPDUWBPZ7dsUaBuwtn2LFt8UGu7I5bdtJATsyuJBawvoTNYfqHz4dDhjzyDWWk-pWtBcfv_lCTr89d_p20TNeIEooLRfbdVJil0VmXlU7_Z70AmqJKrw</recordid><startdate>20220930</startdate><enddate>20220930</enddate><creator>Deolasee, Srujan</creator><creator>Lin, Qin</creator><creator>Li, Jialun</creator><creator>Dolan, John M</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220930</creationdate><title>Spatio-temporal Motion Planning for Autonomous Vehicles with Trapezoidal Prism Corridors and B\'{e}zier Curves</title><author>Deolasee, Srujan ; Lin, Qin ; Li, Jialun ; Dolan, John M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27206666803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Autonomous cars</topic><topic>Collision avoidance</topic><topic>Collision dynamics</topic><topic>Corridors</topic><topic>Motion planning</topic><topic>Optimization</topic><topic>Safety</topic><topic>Solution space</topic><topic>Trajectory planning</topic><toplevel>online_resources</toplevel><creatorcontrib>Deolasee, Srujan</creatorcontrib><creatorcontrib>Lin, Qin</creatorcontrib><creatorcontrib>Li, Jialun</creatorcontrib><creatorcontrib>Dolan, John M</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deolasee, Srujan</au><au>Lin, Qin</au><au>Li, Jialun</au><au>Dolan, John M</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Spatio-temporal Motion Planning for Autonomous Vehicles with Trapezoidal Prism Corridors and B\'{e}zier Curves</atitle><jtitle>arXiv.org</jtitle><date>2022-09-30</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>Safety-guaranteed motion planning is critical for self-driving cars to generate collision-free trajectories. A layered motion planning approach with decoupled path and speed planning is widely used for this purpose. This approach is prone to be suboptimal in the presence of dynamic obstacles. Spatial-temporal approaches deal with path planning and speed planning simultaneously; however, the existing methods only support simple-shaped corridors like cuboids, which restrict the search space for optimization in complex scenarios. We propose to use trapezoidal prism-shaped corridors for optimization, which significantly enlarges the solution space compared to the existing cuboidal corridors-based method. Finally, a piecewise B\'{e}zier curve optimization is conducted in our proposed corridors. This formulation theoretically guarantees the safety of the continuous-time trajectory. We validate the efficiency and effectiveness of the proposed approach in numerical and CommonRoad simulations.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-09
issn 2331-8422
language eng
recordid cdi_proquest_journals_2720666680
source Free E- Journals
subjects Autonomous cars
Collision avoidance
Collision dynamics
Corridors
Motion planning
Optimization
Safety
Solution space
Trajectory planning
title Spatio-temporal Motion Planning for Autonomous Vehicles with Trapezoidal Prism Corridors and B\'{e}zier Curves
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T23%3A35%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Spatio-temporal%20Motion%20Planning%20for%20Autonomous%20Vehicles%20with%20Trapezoidal%20Prism%20Corridors%20and%20B%5C'%7Be%7Dzier%20Curves&rft.jtitle=arXiv.org&rft.au=Deolasee,%20Srujan&rft.date=2022-09-30&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2720666680%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2720666680&rft_id=info:pmid/&rfr_iscdi=true