PyPose: A Library for Robot Learning with Physics-based Optimization

Deep learning has had remarkable success in robotic perception, but its data-centric nature suffers when it comes to generalizing to ever-changing environments. By contrast, physics-based optimization generalizes better, but it does not perform as well in complicated tasks due to the lack of high-le...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-03
Hauptverfasser: Wang, Chen, Gao, Dasong, Xu, Kuan, Geng, Junyi, Hu, Yaoyu, Qiu, Yuheng, Bowen, Li, Yang, Fan, Brady, Moon, Pandey, Abhinav, Aryan, Xu, Jiahe, Wu, Tianhao, He, Haonan, Huang, Daning, Ren, Zhongqiang, Zhao, Shibo, Fu, Taimeng, Reddy, Pranay, Lin, Xiao, Wang, Wenshan, Shi, Jingnan, Talak, Rajat, Cao, Kun, Du, Yi, Wang, Han, Yu, Huai, Wang, Shanzhao, Chen, Siyu, Kashyap, Ananth, Bandaru, Rohan, Dantu, Karthik, Wu, Jiajun, Xie, Lihua, Carlone, Luca, Hutter, Marco, Scherer, Sebastian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Wang, Chen
Gao, Dasong
Xu, Kuan
Geng, Junyi
Hu, Yaoyu
Qiu, Yuheng
Bowen, Li
Yang, Fan
Brady, Moon
Pandey, Abhinav
Aryan
Xu, Jiahe
Wu, Tianhao
He, Haonan
Huang, Daning
Ren, Zhongqiang
Zhao, Shibo
Fu, Taimeng
Reddy, Pranay
Lin, Xiao
Wang, Wenshan
Shi, Jingnan
Talak, Rajat
Cao, Kun
Du, Yi
Wang, Han
Yu, Huai
Wang, Shanzhao
Chen, Siyu
Kashyap, Ananth
Bandaru, Rohan
Dantu, Karthik
Wu, Jiajun
Xie, Lihua
Carlone, Luca
Hutter, Marco
Scherer, Sebastian
description Deep learning has had remarkable success in robotic perception, but its data-centric nature suffers when it comes to generalizing to ever-changing environments. By contrast, physics-based optimization generalizes better, but it does not perform as well in complicated tasks due to the lack of high-level semantic information and reliance on manual parametric tuning. To take advantage of these two complementary worlds, we present PyPose: a robotics-oriented, PyTorch-based library that combines deep perceptual models with physics-based optimization. PyPose's architecture is tidy and well-organized, it has an imperative style interface and is efficient and user-friendly, making it easy to integrate into real-world robotic applications. Besides, it supports parallel computing of any order gradients of Lie groups and Lie algebras and \(2^{\text{nd}}\)-order optimizers, such as trust region methods. Experiments show that PyPose achieves more than \(10\times\) speedup in computation compared to the state-of-the-art libraries. To boost future research, we provide concrete examples for several fields of robot learning, including SLAM, planning, control, and inertial navigation.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2720662391</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2720662391</sourcerecordid><originalsourceid>FETCH-proquest_journals_27206623913</originalsourceid><addsrcrecordid>eNqNyr0KwjAUQOEgCBbtO1xwLqQ3tlU38QcHwSLuJdXUpmhSc1OkPr0OPoDTGb4zYAEKEUfzGeKIhUQN5xzTDJNEBGyT97kltYQVHHTppOuhsg5OtrQeDko6o80NXtrXkNc96QtFpSR1hWPr9UO_pdfWTNiwkndS4a9jNt1tz-t91Dr77BT5orGdM18qMEOepigWsfjv-gDoUjoU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2720662391</pqid></control><display><type>article</type><title>PyPose: A Library for Robot Learning with Physics-based Optimization</title><source>Free E- Journals</source><creator>Wang, Chen ; Gao, Dasong ; Xu, Kuan ; Geng, Junyi ; Hu, Yaoyu ; Qiu, Yuheng ; Bowen, Li ; Yang, Fan ; Brady, Moon ; Pandey, Abhinav ; Aryan ; Xu, Jiahe ; Wu, Tianhao ; He, Haonan ; Huang, Daning ; Ren, Zhongqiang ; Zhao, Shibo ; Fu, Taimeng ; Reddy, Pranay ; Lin, Xiao ; Wang, Wenshan ; Shi, Jingnan ; Talak, Rajat ; Cao, Kun ; Du, Yi ; Wang, Han ; Yu, Huai ; Wang, Shanzhao ; Chen, Siyu ; Kashyap, Ananth ; Bandaru, Rohan ; Dantu, Karthik ; Wu, Jiajun ; Xie, Lihua ; Carlone, Luca ; Hutter, Marco ; Scherer, Sebastian</creator><creatorcontrib>Wang, Chen ; Gao, Dasong ; Xu, Kuan ; Geng, Junyi ; Hu, Yaoyu ; Qiu, Yuheng ; Bowen, Li ; Yang, Fan ; Brady, Moon ; Pandey, Abhinav ; Aryan ; Xu, Jiahe ; Wu, Tianhao ; He, Haonan ; Huang, Daning ; Ren, Zhongqiang ; Zhao, Shibo ; Fu, Taimeng ; Reddy, Pranay ; Lin, Xiao ; Wang, Wenshan ; Shi, Jingnan ; Talak, Rajat ; Cao, Kun ; Du, Yi ; Wang, Han ; Yu, Huai ; Wang, Shanzhao ; Chen, Siyu ; Kashyap, Ananth ; Bandaru, Rohan ; Dantu, Karthik ; Wu, Jiajun ; Xie, Lihua ; Carlone, Luca ; Hutter, Marco ; Scherer, Sebastian</creatorcontrib><description>Deep learning has had remarkable success in robotic perception, but its data-centric nature suffers when it comes to generalizing to ever-changing environments. By contrast, physics-based optimization generalizes better, but it does not perform as well in complicated tasks due to the lack of high-level semantic information and reliance on manual parametric tuning. To take advantage of these two complementary worlds, we present PyPose: a robotics-oriented, PyTorch-based library that combines deep perceptual models with physics-based optimization. PyPose's architecture is tidy and well-organized, it has an imperative style interface and is efficient and user-friendly, making it easy to integrate into real-world robotic applications. Besides, it supports parallel computing of any order gradients of Lie groups and Lie algebras and \(2^{\text{nd}}\)-order optimizers, such as trust region methods. Experiments show that PyPose achieves more than \(10\times\) speedup in computation compared to the state-of-the-art libraries. To boost future research, we provide concrete examples for several fields of robot learning, including SLAM, planning, control, and inertial navigation.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Changing environments ; Deep learning ; Design optimization ; Group theory ; Inertial navigation ; Libraries ; Lie groups ; Optimization techniques ; Physics ; Robot learning ; Robotics</subject><ispartof>arXiv.org, 2023-03</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Wang, Chen</creatorcontrib><creatorcontrib>Gao, Dasong</creatorcontrib><creatorcontrib>Xu, Kuan</creatorcontrib><creatorcontrib>Geng, Junyi</creatorcontrib><creatorcontrib>Hu, Yaoyu</creatorcontrib><creatorcontrib>Qiu, Yuheng</creatorcontrib><creatorcontrib>Bowen, Li</creatorcontrib><creatorcontrib>Yang, Fan</creatorcontrib><creatorcontrib>Brady, Moon</creatorcontrib><creatorcontrib>Pandey, Abhinav</creatorcontrib><creatorcontrib>Aryan</creatorcontrib><creatorcontrib>Xu, Jiahe</creatorcontrib><creatorcontrib>Wu, Tianhao</creatorcontrib><creatorcontrib>He, Haonan</creatorcontrib><creatorcontrib>Huang, Daning</creatorcontrib><creatorcontrib>Ren, Zhongqiang</creatorcontrib><creatorcontrib>Zhao, Shibo</creatorcontrib><creatorcontrib>Fu, Taimeng</creatorcontrib><creatorcontrib>Reddy, Pranay</creatorcontrib><creatorcontrib>Lin, Xiao</creatorcontrib><creatorcontrib>Wang, Wenshan</creatorcontrib><creatorcontrib>Shi, Jingnan</creatorcontrib><creatorcontrib>Talak, Rajat</creatorcontrib><creatorcontrib>Cao, Kun</creatorcontrib><creatorcontrib>Du, Yi</creatorcontrib><creatorcontrib>Wang, Han</creatorcontrib><creatorcontrib>Yu, Huai</creatorcontrib><creatorcontrib>Wang, Shanzhao</creatorcontrib><creatorcontrib>Chen, Siyu</creatorcontrib><creatorcontrib>Kashyap, Ananth</creatorcontrib><creatorcontrib>Bandaru, Rohan</creatorcontrib><creatorcontrib>Dantu, Karthik</creatorcontrib><creatorcontrib>Wu, Jiajun</creatorcontrib><creatorcontrib>Xie, Lihua</creatorcontrib><creatorcontrib>Carlone, Luca</creatorcontrib><creatorcontrib>Hutter, Marco</creatorcontrib><creatorcontrib>Scherer, Sebastian</creatorcontrib><title>PyPose: A Library for Robot Learning with Physics-based Optimization</title><title>arXiv.org</title><description>Deep learning has had remarkable success in robotic perception, but its data-centric nature suffers when it comes to generalizing to ever-changing environments. By contrast, physics-based optimization generalizes better, but it does not perform as well in complicated tasks due to the lack of high-level semantic information and reliance on manual parametric tuning. To take advantage of these two complementary worlds, we present PyPose: a robotics-oriented, PyTorch-based library that combines deep perceptual models with physics-based optimization. PyPose's architecture is tidy and well-organized, it has an imperative style interface and is efficient and user-friendly, making it easy to integrate into real-world robotic applications. Besides, it supports parallel computing of any order gradients of Lie groups and Lie algebras and \(2^{\text{nd}}\)-order optimizers, such as trust region methods. Experiments show that PyPose achieves more than \(10\times\) speedup in computation compared to the state-of-the-art libraries. To boost future research, we provide concrete examples for several fields of robot learning, including SLAM, planning, control, and inertial navigation.</description><subject>Changing environments</subject><subject>Deep learning</subject><subject>Design optimization</subject><subject>Group theory</subject><subject>Inertial navigation</subject><subject>Libraries</subject><subject>Lie groups</subject><subject>Optimization techniques</subject><subject>Physics</subject><subject>Robot learning</subject><subject>Robotics</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyr0KwjAUQOEgCBbtO1xwLqQ3tlU38QcHwSLuJdXUpmhSc1OkPr0OPoDTGb4zYAEKEUfzGeKIhUQN5xzTDJNEBGyT97kltYQVHHTppOuhsg5OtrQeDko6o80NXtrXkNc96QtFpSR1hWPr9UO_pdfWTNiwkndS4a9jNt1tz-t91Dr77BT5orGdM18qMEOepigWsfjv-gDoUjoU</recordid><startdate>20230324</startdate><enddate>20230324</enddate><creator>Wang, Chen</creator><creator>Gao, Dasong</creator><creator>Xu, Kuan</creator><creator>Geng, Junyi</creator><creator>Hu, Yaoyu</creator><creator>Qiu, Yuheng</creator><creator>Bowen, Li</creator><creator>Yang, Fan</creator><creator>Brady, Moon</creator><creator>Pandey, Abhinav</creator><creator>Aryan</creator><creator>Xu, Jiahe</creator><creator>Wu, Tianhao</creator><creator>He, Haonan</creator><creator>Huang, Daning</creator><creator>Ren, Zhongqiang</creator><creator>Zhao, Shibo</creator><creator>Fu, Taimeng</creator><creator>Reddy, Pranay</creator><creator>Lin, Xiao</creator><creator>Wang, Wenshan</creator><creator>Shi, Jingnan</creator><creator>Talak, Rajat</creator><creator>Cao, Kun</creator><creator>Du, Yi</creator><creator>Wang, Han</creator><creator>Yu, Huai</creator><creator>Wang, Shanzhao</creator><creator>Chen, Siyu</creator><creator>Kashyap, Ananth</creator><creator>Bandaru, Rohan</creator><creator>Dantu, Karthik</creator><creator>Wu, Jiajun</creator><creator>Xie, Lihua</creator><creator>Carlone, Luca</creator><creator>Hutter, Marco</creator><creator>Scherer, Sebastian</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230324</creationdate><title>PyPose: A Library for Robot Learning with Physics-based Optimization</title><author>Wang, Chen ; Gao, Dasong ; Xu, Kuan ; Geng, Junyi ; Hu, Yaoyu ; Qiu, Yuheng ; Bowen, Li ; Yang, Fan ; Brady, Moon ; Pandey, Abhinav ; Aryan ; Xu, Jiahe ; Wu, Tianhao ; He, Haonan ; Huang, Daning ; Ren, Zhongqiang ; Zhao, Shibo ; Fu, Taimeng ; Reddy, Pranay ; Lin, Xiao ; Wang, Wenshan ; Shi, Jingnan ; Talak, Rajat ; Cao, Kun ; Du, Yi ; Wang, Han ; Yu, Huai ; Wang, Shanzhao ; Chen, Siyu ; Kashyap, Ananth ; Bandaru, Rohan ; Dantu, Karthik ; Wu, Jiajun ; Xie, Lihua ; Carlone, Luca ; Hutter, Marco ; Scherer, Sebastian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27206623913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Changing environments</topic><topic>Deep learning</topic><topic>Design optimization</topic><topic>Group theory</topic><topic>Inertial navigation</topic><topic>Libraries</topic><topic>Lie groups</topic><topic>Optimization techniques</topic><topic>Physics</topic><topic>Robot learning</topic><topic>Robotics</topic><toplevel>online_resources</toplevel><creatorcontrib>Wang, Chen</creatorcontrib><creatorcontrib>Gao, Dasong</creatorcontrib><creatorcontrib>Xu, Kuan</creatorcontrib><creatorcontrib>Geng, Junyi</creatorcontrib><creatorcontrib>Hu, Yaoyu</creatorcontrib><creatorcontrib>Qiu, Yuheng</creatorcontrib><creatorcontrib>Bowen, Li</creatorcontrib><creatorcontrib>Yang, Fan</creatorcontrib><creatorcontrib>Brady, Moon</creatorcontrib><creatorcontrib>Pandey, Abhinav</creatorcontrib><creatorcontrib>Aryan</creatorcontrib><creatorcontrib>Xu, Jiahe</creatorcontrib><creatorcontrib>Wu, Tianhao</creatorcontrib><creatorcontrib>He, Haonan</creatorcontrib><creatorcontrib>Huang, Daning</creatorcontrib><creatorcontrib>Ren, Zhongqiang</creatorcontrib><creatorcontrib>Zhao, Shibo</creatorcontrib><creatorcontrib>Fu, Taimeng</creatorcontrib><creatorcontrib>Reddy, Pranay</creatorcontrib><creatorcontrib>Lin, Xiao</creatorcontrib><creatorcontrib>Wang, Wenshan</creatorcontrib><creatorcontrib>Shi, Jingnan</creatorcontrib><creatorcontrib>Talak, Rajat</creatorcontrib><creatorcontrib>Cao, Kun</creatorcontrib><creatorcontrib>Du, Yi</creatorcontrib><creatorcontrib>Wang, Han</creatorcontrib><creatorcontrib>Yu, Huai</creatorcontrib><creatorcontrib>Wang, Shanzhao</creatorcontrib><creatorcontrib>Chen, Siyu</creatorcontrib><creatorcontrib>Kashyap, Ananth</creatorcontrib><creatorcontrib>Bandaru, Rohan</creatorcontrib><creatorcontrib>Dantu, Karthik</creatorcontrib><creatorcontrib>Wu, Jiajun</creatorcontrib><creatorcontrib>Xie, Lihua</creatorcontrib><creatorcontrib>Carlone, Luca</creatorcontrib><creatorcontrib>Hutter, Marco</creatorcontrib><creatorcontrib>Scherer, Sebastian</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Chen</au><au>Gao, Dasong</au><au>Xu, Kuan</au><au>Geng, Junyi</au><au>Hu, Yaoyu</au><au>Qiu, Yuheng</au><au>Bowen, Li</au><au>Yang, Fan</au><au>Brady, Moon</au><au>Pandey, Abhinav</au><au>Aryan</au><au>Xu, Jiahe</au><au>Wu, Tianhao</au><au>He, Haonan</au><au>Huang, Daning</au><au>Ren, Zhongqiang</au><au>Zhao, Shibo</au><au>Fu, Taimeng</au><au>Reddy, Pranay</au><au>Lin, Xiao</au><au>Wang, Wenshan</au><au>Shi, Jingnan</au><au>Talak, Rajat</au><au>Cao, Kun</au><au>Du, Yi</au><au>Wang, Han</au><au>Yu, Huai</au><au>Wang, Shanzhao</au><au>Chen, Siyu</au><au>Kashyap, Ananth</au><au>Bandaru, Rohan</au><au>Dantu, Karthik</au><au>Wu, Jiajun</au><au>Xie, Lihua</au><au>Carlone, Luca</au><au>Hutter, Marco</au><au>Scherer, Sebastian</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>PyPose: A Library for Robot Learning with Physics-based Optimization</atitle><jtitle>arXiv.org</jtitle><date>2023-03-24</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Deep learning has had remarkable success in robotic perception, but its data-centric nature suffers when it comes to generalizing to ever-changing environments. By contrast, physics-based optimization generalizes better, but it does not perform as well in complicated tasks due to the lack of high-level semantic information and reliance on manual parametric tuning. To take advantage of these two complementary worlds, we present PyPose: a robotics-oriented, PyTorch-based library that combines deep perceptual models with physics-based optimization. PyPose's architecture is tidy and well-organized, it has an imperative style interface and is efficient and user-friendly, making it easy to integrate into real-world robotic applications. Besides, it supports parallel computing of any order gradients of Lie groups and Lie algebras and \(2^{\text{nd}}\)-order optimizers, such as trust region methods. Experiments show that PyPose achieves more than \(10\times\) speedup in computation compared to the state-of-the-art libraries. To boost future research, we provide concrete examples for several fields of robot learning, including SLAM, planning, control, and inertial navigation.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-03
issn 2331-8422
language eng
recordid cdi_proquest_journals_2720662391
source Free E- Journals
subjects Changing environments
Deep learning
Design optimization
Group theory
Inertial navigation
Libraries
Lie groups
Optimization techniques
Physics
Robot learning
Robotics
title PyPose: A Library for Robot Learning with Physics-based Optimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T19%3A55%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=PyPose:%20A%20Library%20for%20Robot%20Learning%20with%20Physics-based%20Optimization&rft.jtitle=arXiv.org&rft.au=Wang,%20Chen&rft.date=2023-03-24&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2720662391%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2720662391&rft_id=info:pmid/&rfr_iscdi=true