PyPose: A Library for Robot Learning with Physics-based Optimization
Deep learning has had remarkable success in robotic perception, but its data-centric nature suffers when it comes to generalizing to ever-changing environments. By contrast, physics-based optimization generalizes better, but it does not perform as well in complicated tasks due to the lack of high-le...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-03 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Wang, Chen Gao, Dasong Xu, Kuan Geng, Junyi Hu, Yaoyu Qiu, Yuheng Bowen, Li Yang, Fan Brady, Moon Pandey, Abhinav Aryan Xu, Jiahe Wu, Tianhao He, Haonan Huang, Daning Ren, Zhongqiang Zhao, Shibo Fu, Taimeng Reddy, Pranay Lin, Xiao Wang, Wenshan Shi, Jingnan Talak, Rajat Cao, Kun Du, Yi Wang, Han Yu, Huai Wang, Shanzhao Chen, Siyu Kashyap, Ananth Bandaru, Rohan Dantu, Karthik Wu, Jiajun Xie, Lihua Carlone, Luca Hutter, Marco Scherer, Sebastian |
description | Deep learning has had remarkable success in robotic perception, but its data-centric nature suffers when it comes to generalizing to ever-changing environments. By contrast, physics-based optimization generalizes better, but it does not perform as well in complicated tasks due to the lack of high-level semantic information and reliance on manual parametric tuning. To take advantage of these two complementary worlds, we present PyPose: a robotics-oriented, PyTorch-based library that combines deep perceptual models with physics-based optimization. PyPose's architecture is tidy and well-organized, it has an imperative style interface and is efficient and user-friendly, making it easy to integrate into real-world robotic applications. Besides, it supports parallel computing of any order gradients of Lie groups and Lie algebras and \(2^{\text{nd}}\)-order optimizers, such as trust region methods. Experiments show that PyPose achieves more than \(10\times\) speedup in computation compared to the state-of-the-art libraries. To boost future research, we provide concrete examples for several fields of robot learning, including SLAM, planning, control, and inertial navigation. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2720662391</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2720662391</sourcerecordid><originalsourceid>FETCH-proquest_journals_27206623913</originalsourceid><addsrcrecordid>eNqNyr0KwjAUQOEgCBbtO1xwLqQ3tlU38QcHwSLuJdXUpmhSc1OkPr0OPoDTGb4zYAEKEUfzGeKIhUQN5xzTDJNEBGyT97kltYQVHHTppOuhsg5OtrQeDko6o80NXtrXkNc96QtFpSR1hWPr9UO_pdfWTNiwkndS4a9jNt1tz-t91Dr77BT5orGdM18qMEOepigWsfjv-gDoUjoU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2720662391</pqid></control><display><type>article</type><title>PyPose: A Library for Robot Learning with Physics-based Optimization</title><source>Free E- Journals</source><creator>Wang, Chen ; Gao, Dasong ; Xu, Kuan ; Geng, Junyi ; Hu, Yaoyu ; Qiu, Yuheng ; Bowen, Li ; Yang, Fan ; Brady, Moon ; Pandey, Abhinav ; Aryan ; Xu, Jiahe ; Wu, Tianhao ; He, Haonan ; Huang, Daning ; Ren, Zhongqiang ; Zhao, Shibo ; Fu, Taimeng ; Reddy, Pranay ; Lin, Xiao ; Wang, Wenshan ; Shi, Jingnan ; Talak, Rajat ; Cao, Kun ; Du, Yi ; Wang, Han ; Yu, Huai ; Wang, Shanzhao ; Chen, Siyu ; Kashyap, Ananth ; Bandaru, Rohan ; Dantu, Karthik ; Wu, Jiajun ; Xie, Lihua ; Carlone, Luca ; Hutter, Marco ; Scherer, Sebastian</creator><creatorcontrib>Wang, Chen ; Gao, Dasong ; Xu, Kuan ; Geng, Junyi ; Hu, Yaoyu ; Qiu, Yuheng ; Bowen, Li ; Yang, Fan ; Brady, Moon ; Pandey, Abhinav ; Aryan ; Xu, Jiahe ; Wu, Tianhao ; He, Haonan ; Huang, Daning ; Ren, Zhongqiang ; Zhao, Shibo ; Fu, Taimeng ; Reddy, Pranay ; Lin, Xiao ; Wang, Wenshan ; Shi, Jingnan ; Talak, Rajat ; Cao, Kun ; Du, Yi ; Wang, Han ; Yu, Huai ; Wang, Shanzhao ; Chen, Siyu ; Kashyap, Ananth ; Bandaru, Rohan ; Dantu, Karthik ; Wu, Jiajun ; Xie, Lihua ; Carlone, Luca ; Hutter, Marco ; Scherer, Sebastian</creatorcontrib><description>Deep learning has had remarkable success in robotic perception, but its data-centric nature suffers when it comes to generalizing to ever-changing environments. By contrast, physics-based optimization generalizes better, but it does not perform as well in complicated tasks due to the lack of high-level semantic information and reliance on manual parametric tuning. To take advantage of these two complementary worlds, we present PyPose: a robotics-oriented, PyTorch-based library that combines deep perceptual models with physics-based optimization. PyPose's architecture is tidy and well-organized, it has an imperative style interface and is efficient and user-friendly, making it easy to integrate into real-world robotic applications. Besides, it supports parallel computing of any order gradients of Lie groups and Lie algebras and \(2^{\text{nd}}\)-order optimizers, such as trust region methods. Experiments show that PyPose achieves more than \(10\times\) speedup in computation compared to the state-of-the-art libraries. To boost future research, we provide concrete examples for several fields of robot learning, including SLAM, planning, control, and inertial navigation.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Changing environments ; Deep learning ; Design optimization ; Group theory ; Inertial navigation ; Libraries ; Lie groups ; Optimization techniques ; Physics ; Robot learning ; Robotics</subject><ispartof>arXiv.org, 2023-03</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Wang, Chen</creatorcontrib><creatorcontrib>Gao, Dasong</creatorcontrib><creatorcontrib>Xu, Kuan</creatorcontrib><creatorcontrib>Geng, Junyi</creatorcontrib><creatorcontrib>Hu, Yaoyu</creatorcontrib><creatorcontrib>Qiu, Yuheng</creatorcontrib><creatorcontrib>Bowen, Li</creatorcontrib><creatorcontrib>Yang, Fan</creatorcontrib><creatorcontrib>Brady, Moon</creatorcontrib><creatorcontrib>Pandey, Abhinav</creatorcontrib><creatorcontrib>Aryan</creatorcontrib><creatorcontrib>Xu, Jiahe</creatorcontrib><creatorcontrib>Wu, Tianhao</creatorcontrib><creatorcontrib>He, Haonan</creatorcontrib><creatorcontrib>Huang, Daning</creatorcontrib><creatorcontrib>Ren, Zhongqiang</creatorcontrib><creatorcontrib>Zhao, Shibo</creatorcontrib><creatorcontrib>Fu, Taimeng</creatorcontrib><creatorcontrib>Reddy, Pranay</creatorcontrib><creatorcontrib>Lin, Xiao</creatorcontrib><creatorcontrib>Wang, Wenshan</creatorcontrib><creatorcontrib>Shi, Jingnan</creatorcontrib><creatorcontrib>Talak, Rajat</creatorcontrib><creatorcontrib>Cao, Kun</creatorcontrib><creatorcontrib>Du, Yi</creatorcontrib><creatorcontrib>Wang, Han</creatorcontrib><creatorcontrib>Yu, Huai</creatorcontrib><creatorcontrib>Wang, Shanzhao</creatorcontrib><creatorcontrib>Chen, Siyu</creatorcontrib><creatorcontrib>Kashyap, Ananth</creatorcontrib><creatorcontrib>Bandaru, Rohan</creatorcontrib><creatorcontrib>Dantu, Karthik</creatorcontrib><creatorcontrib>Wu, Jiajun</creatorcontrib><creatorcontrib>Xie, Lihua</creatorcontrib><creatorcontrib>Carlone, Luca</creatorcontrib><creatorcontrib>Hutter, Marco</creatorcontrib><creatorcontrib>Scherer, Sebastian</creatorcontrib><title>PyPose: A Library for Robot Learning with Physics-based Optimization</title><title>arXiv.org</title><description>Deep learning has had remarkable success in robotic perception, but its data-centric nature suffers when it comes to generalizing to ever-changing environments. By contrast, physics-based optimization generalizes better, but it does not perform as well in complicated tasks due to the lack of high-level semantic information and reliance on manual parametric tuning. To take advantage of these two complementary worlds, we present PyPose: a robotics-oriented, PyTorch-based library that combines deep perceptual models with physics-based optimization. PyPose's architecture is tidy and well-organized, it has an imperative style interface and is efficient and user-friendly, making it easy to integrate into real-world robotic applications. Besides, it supports parallel computing of any order gradients of Lie groups and Lie algebras and \(2^{\text{nd}}\)-order optimizers, such as trust region methods. Experiments show that PyPose achieves more than \(10\times\) speedup in computation compared to the state-of-the-art libraries. To boost future research, we provide concrete examples for several fields of robot learning, including SLAM, planning, control, and inertial navigation.</description><subject>Changing environments</subject><subject>Deep learning</subject><subject>Design optimization</subject><subject>Group theory</subject><subject>Inertial navigation</subject><subject>Libraries</subject><subject>Lie groups</subject><subject>Optimization techniques</subject><subject>Physics</subject><subject>Robot learning</subject><subject>Robotics</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyr0KwjAUQOEgCBbtO1xwLqQ3tlU38QcHwSLuJdXUpmhSc1OkPr0OPoDTGb4zYAEKEUfzGeKIhUQN5xzTDJNEBGyT97kltYQVHHTppOuhsg5OtrQeDko6o80NXtrXkNc96QtFpSR1hWPr9UO_pdfWTNiwkndS4a9jNt1tz-t91Dr77BT5orGdM18qMEOepigWsfjv-gDoUjoU</recordid><startdate>20230324</startdate><enddate>20230324</enddate><creator>Wang, Chen</creator><creator>Gao, Dasong</creator><creator>Xu, Kuan</creator><creator>Geng, Junyi</creator><creator>Hu, Yaoyu</creator><creator>Qiu, Yuheng</creator><creator>Bowen, Li</creator><creator>Yang, Fan</creator><creator>Brady, Moon</creator><creator>Pandey, Abhinav</creator><creator>Aryan</creator><creator>Xu, Jiahe</creator><creator>Wu, Tianhao</creator><creator>He, Haonan</creator><creator>Huang, Daning</creator><creator>Ren, Zhongqiang</creator><creator>Zhao, Shibo</creator><creator>Fu, Taimeng</creator><creator>Reddy, Pranay</creator><creator>Lin, Xiao</creator><creator>Wang, Wenshan</creator><creator>Shi, Jingnan</creator><creator>Talak, Rajat</creator><creator>Cao, Kun</creator><creator>Du, Yi</creator><creator>Wang, Han</creator><creator>Yu, Huai</creator><creator>Wang, Shanzhao</creator><creator>Chen, Siyu</creator><creator>Kashyap, Ananth</creator><creator>Bandaru, Rohan</creator><creator>Dantu, Karthik</creator><creator>Wu, Jiajun</creator><creator>Xie, Lihua</creator><creator>Carlone, Luca</creator><creator>Hutter, Marco</creator><creator>Scherer, Sebastian</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230324</creationdate><title>PyPose: A Library for Robot Learning with Physics-based Optimization</title><author>Wang, Chen ; Gao, Dasong ; Xu, Kuan ; Geng, Junyi ; Hu, Yaoyu ; Qiu, Yuheng ; Bowen, Li ; Yang, Fan ; Brady, Moon ; Pandey, Abhinav ; Aryan ; Xu, Jiahe ; Wu, Tianhao ; He, Haonan ; Huang, Daning ; Ren, Zhongqiang ; Zhao, Shibo ; Fu, Taimeng ; Reddy, Pranay ; Lin, Xiao ; Wang, Wenshan ; Shi, Jingnan ; Talak, Rajat ; Cao, Kun ; Du, Yi ; Wang, Han ; Yu, Huai ; Wang, Shanzhao ; Chen, Siyu ; Kashyap, Ananth ; Bandaru, Rohan ; Dantu, Karthik ; Wu, Jiajun ; Xie, Lihua ; Carlone, Luca ; Hutter, Marco ; Scherer, Sebastian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27206623913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Changing environments</topic><topic>Deep learning</topic><topic>Design optimization</topic><topic>Group theory</topic><topic>Inertial navigation</topic><topic>Libraries</topic><topic>Lie groups</topic><topic>Optimization techniques</topic><topic>Physics</topic><topic>Robot learning</topic><topic>Robotics</topic><toplevel>online_resources</toplevel><creatorcontrib>Wang, Chen</creatorcontrib><creatorcontrib>Gao, Dasong</creatorcontrib><creatorcontrib>Xu, Kuan</creatorcontrib><creatorcontrib>Geng, Junyi</creatorcontrib><creatorcontrib>Hu, Yaoyu</creatorcontrib><creatorcontrib>Qiu, Yuheng</creatorcontrib><creatorcontrib>Bowen, Li</creatorcontrib><creatorcontrib>Yang, Fan</creatorcontrib><creatorcontrib>Brady, Moon</creatorcontrib><creatorcontrib>Pandey, Abhinav</creatorcontrib><creatorcontrib>Aryan</creatorcontrib><creatorcontrib>Xu, Jiahe</creatorcontrib><creatorcontrib>Wu, Tianhao</creatorcontrib><creatorcontrib>He, Haonan</creatorcontrib><creatorcontrib>Huang, Daning</creatorcontrib><creatorcontrib>Ren, Zhongqiang</creatorcontrib><creatorcontrib>Zhao, Shibo</creatorcontrib><creatorcontrib>Fu, Taimeng</creatorcontrib><creatorcontrib>Reddy, Pranay</creatorcontrib><creatorcontrib>Lin, Xiao</creatorcontrib><creatorcontrib>Wang, Wenshan</creatorcontrib><creatorcontrib>Shi, Jingnan</creatorcontrib><creatorcontrib>Talak, Rajat</creatorcontrib><creatorcontrib>Cao, Kun</creatorcontrib><creatorcontrib>Du, Yi</creatorcontrib><creatorcontrib>Wang, Han</creatorcontrib><creatorcontrib>Yu, Huai</creatorcontrib><creatorcontrib>Wang, Shanzhao</creatorcontrib><creatorcontrib>Chen, Siyu</creatorcontrib><creatorcontrib>Kashyap, Ananth</creatorcontrib><creatorcontrib>Bandaru, Rohan</creatorcontrib><creatorcontrib>Dantu, Karthik</creatorcontrib><creatorcontrib>Wu, Jiajun</creatorcontrib><creatorcontrib>Xie, Lihua</creatorcontrib><creatorcontrib>Carlone, Luca</creatorcontrib><creatorcontrib>Hutter, Marco</creatorcontrib><creatorcontrib>Scherer, Sebastian</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Chen</au><au>Gao, Dasong</au><au>Xu, Kuan</au><au>Geng, Junyi</au><au>Hu, Yaoyu</au><au>Qiu, Yuheng</au><au>Bowen, Li</au><au>Yang, Fan</au><au>Brady, Moon</au><au>Pandey, Abhinav</au><au>Aryan</au><au>Xu, Jiahe</au><au>Wu, Tianhao</au><au>He, Haonan</au><au>Huang, Daning</au><au>Ren, Zhongqiang</au><au>Zhao, Shibo</au><au>Fu, Taimeng</au><au>Reddy, Pranay</au><au>Lin, Xiao</au><au>Wang, Wenshan</au><au>Shi, Jingnan</au><au>Talak, Rajat</au><au>Cao, Kun</au><au>Du, Yi</au><au>Wang, Han</au><au>Yu, Huai</au><au>Wang, Shanzhao</au><au>Chen, Siyu</au><au>Kashyap, Ananth</au><au>Bandaru, Rohan</au><au>Dantu, Karthik</au><au>Wu, Jiajun</au><au>Xie, Lihua</au><au>Carlone, Luca</au><au>Hutter, Marco</au><au>Scherer, Sebastian</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>PyPose: A Library for Robot Learning with Physics-based Optimization</atitle><jtitle>arXiv.org</jtitle><date>2023-03-24</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Deep learning has had remarkable success in robotic perception, but its data-centric nature suffers when it comes to generalizing to ever-changing environments. By contrast, physics-based optimization generalizes better, but it does not perform as well in complicated tasks due to the lack of high-level semantic information and reliance on manual parametric tuning. To take advantage of these two complementary worlds, we present PyPose: a robotics-oriented, PyTorch-based library that combines deep perceptual models with physics-based optimization. PyPose's architecture is tidy and well-organized, it has an imperative style interface and is efficient and user-friendly, making it easy to integrate into real-world robotic applications. Besides, it supports parallel computing of any order gradients of Lie groups and Lie algebras and \(2^{\text{nd}}\)-order optimizers, such as trust region methods. Experiments show that PyPose achieves more than \(10\times\) speedup in computation compared to the state-of-the-art libraries. To boost future research, we provide concrete examples for several fields of robot learning, including SLAM, planning, control, and inertial navigation.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-03 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2720662391 |
source | Free E- Journals |
subjects | Changing environments Deep learning Design optimization Group theory Inertial navigation Libraries Lie groups Optimization techniques Physics Robot learning Robotics |
title | PyPose: A Library for Robot Learning with Physics-based Optimization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T19%3A55%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=PyPose:%20A%20Library%20for%20Robot%20Learning%20with%20Physics-based%20Optimization&rft.jtitle=arXiv.org&rft.au=Wang,%20Chen&rft.date=2023-03-24&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2720662391%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2720662391&rft_id=info:pmid/&rfr_iscdi=true |