Segmentation and identification of brain tumour using region-based segmentation and convolutional neural network
In modern defunct computer science applications, resonance Imaging (MRI) is solicited in numerous detached analyses. However, examining tumors without human mediation is taken into account as a significant space of research as a result of the extracted brain images need to be designed mistreatment a...
Gespeichert in:
Veröffentlicht in: | AIP conference proceedings 2022-10, Vol.2519 (1) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | AIP conference proceedings |
container_volume | 2519 |
creator | Kristina Kumar, Kishore Jai Sanjay, B |
description | In modern defunct computer science applications, resonance Imaging (MRI) is solicited in numerous detached analyses. However, examining tumors without human mediation is taken into account as a significant space of research as a result of the extracted brain images need to be designed mistreatment actionable rule that should have soar buoyant towards din and bunch size vulnerability complication with robotic province-based discernment. During this analysis, AN boost Region hinge utensil -swatting loom is employed to inspect the down fragment and atop fragments of the tumor regions to find the deformity with robotic Region-based discernment. After the victorious wisdom of the tumor part, we will sort the three divergent strains of brain tumors, such as benign and malignant. For that, we are using the convolutional neural network (CNN) method for identifying the above. This analysis pays its expertise in brain deformity discernment and probe in the health care sector without human mediation. |
doi_str_mv | 10.1063/5.0109953 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2720625687</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2720625687</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1333-17dfba584292ca0c87bcd22511815b0c6e9a97bd4e8c8a603c94999cfe53fa203</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKsL_0HAnTA1j0kyWUrRKhRcqOAuZPIoqe1kTGYq_nunTkFw4epy7v04nHsAuMRohhGnN2yGMJKS0SMwwYzhQnDMj8EEIVkWpKRvp-As5zVCRApRTUD77FZb13S6C7GBurEw2EEGH8y4ih7WSYcGdv029gn2OTQrmNxqOBa1zs7C_NfCxGYXN_1e6w1sXJ9-RvcZ0_s5OPF6k93FYU7B6_3dy_yhWD4tHue3y6LFlNICC-trzaqSSGI0MpWojSWEYVxhViPDndRS1LZ0lak0R9TIUkppvGPUa4LoFFyNvm2KH73LnVoP8Yc8WRFBECeMV2KgrkcqmzA-oNoUtjp9KYzUvlHF1KHR_-BdTL-gaq2n3zcWeWY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2720625687</pqid></control><display><type>article</type><title>Segmentation and identification of brain tumour using region-based segmentation and convolutional neural network</title><source>AIP Journals Complete</source><creator>Kristina ; Kumar, Kishore ; Jai Sanjay, B</creator><contributor>Loganathan, K. ; Sakthivel, P.</contributor><creatorcontrib>Kristina ; Kumar, Kishore ; Jai Sanjay, B ; Loganathan, K. ; Sakthivel, P.</creatorcontrib><description>In modern defunct computer science applications, resonance Imaging (MRI) is solicited in numerous detached analyses. However, examining tumors without human mediation is taken into account as a significant space of research as a result of the extracted brain images need to be designed mistreatment actionable rule that should have soar buoyant towards din and bunch size vulnerability complication with robotic province-based discernment. During this analysis, AN boost Region hinge utensil -swatting loom is employed to inspect the down fragment and atop fragments of the tumor regions to find the deformity with robotic Region-based discernment. After the victorious wisdom of the tumor part, we will sort the three divergent strains of brain tumors, such as benign and malignant. For that, we are using the convolutional neural network (CNN) method for identifying the above. This analysis pays its expertise in brain deformity discernment and probe in the health care sector without human mediation.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0109953</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Artificial neural networks ; Brain ; Image segmentation ; Neural networks ; Tumors</subject><ispartof>AIP conference proceedings, 2022-10, Vol.2519 (1)</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0109953$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,777,781,786,787,791,4498,23911,23912,25121,27905,27906,76133</link.rule.ids></links><search><contributor>Loganathan, K.</contributor><contributor>Sakthivel, P.</contributor><creatorcontrib>Kristina</creatorcontrib><creatorcontrib>Kumar, Kishore</creatorcontrib><creatorcontrib>Jai Sanjay, B</creatorcontrib><title>Segmentation and identification of brain tumour using region-based segmentation and convolutional neural network</title><title>AIP conference proceedings</title><description>In modern defunct computer science applications, resonance Imaging (MRI) is solicited in numerous detached analyses. However, examining tumors without human mediation is taken into account as a significant space of research as a result of the extracted brain images need to be designed mistreatment actionable rule that should have soar buoyant towards din and bunch size vulnerability complication with robotic province-based discernment. During this analysis, AN boost Region hinge utensil -swatting loom is employed to inspect the down fragment and atop fragments of the tumor regions to find the deformity with robotic Region-based discernment. After the victorious wisdom of the tumor part, we will sort the three divergent strains of brain tumors, such as benign and malignant. For that, we are using the convolutional neural network (CNN) method for identifying the above. This analysis pays its expertise in brain deformity discernment and probe in the health care sector without human mediation.</description><subject>Artificial neural networks</subject><subject>Brain</subject><subject>Image segmentation</subject><subject>Neural networks</subject><subject>Tumors</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKsL_0HAnTA1j0kyWUrRKhRcqOAuZPIoqe1kTGYq_nunTkFw4epy7v04nHsAuMRohhGnN2yGMJKS0SMwwYzhQnDMj8EEIVkWpKRvp-As5zVCRApRTUD77FZb13S6C7GBurEw2EEGH8y4ih7WSYcGdv029gn2OTQrmNxqOBa1zs7C_NfCxGYXN_1e6w1sXJ9-RvcZ0_s5OPF6k93FYU7B6_3dy_yhWD4tHue3y6LFlNICC-trzaqSSGI0MpWojSWEYVxhViPDndRS1LZ0lak0R9TIUkppvGPUa4LoFFyNvm2KH73LnVoP8Yc8WRFBECeMV2KgrkcqmzA-oNoUtjp9KYzUvlHF1KHR_-BdTL-gaq2n3zcWeWY</recordid><startdate>20221003</startdate><enddate>20221003</enddate><creator>Kristina</creator><creator>Kumar, Kishore</creator><creator>Jai Sanjay, B</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20221003</creationdate><title>Segmentation and identification of brain tumour using region-based segmentation and convolutional neural network</title><author>Kristina ; Kumar, Kishore ; Jai Sanjay, B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1333-17dfba584292ca0c87bcd22511815b0c6e9a97bd4e8c8a603c94999cfe53fa203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial neural networks</topic><topic>Brain</topic><topic>Image segmentation</topic><topic>Neural networks</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kristina</creatorcontrib><creatorcontrib>Kumar, Kishore</creatorcontrib><creatorcontrib>Jai Sanjay, B</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>AIP conference proceedings</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kristina</au><au>Kumar, Kishore</au><au>Jai Sanjay, B</au><au>Loganathan, K.</au><au>Sakthivel, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Segmentation and identification of brain tumour using region-based segmentation and convolutional neural network</atitle><jtitle>AIP conference proceedings</jtitle><date>2022-10-03</date><risdate>2022</risdate><volume>2519</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>In modern defunct computer science applications, resonance Imaging (MRI) is solicited in numerous detached analyses. However, examining tumors without human mediation is taken into account as a significant space of research as a result of the extracted brain images need to be designed mistreatment actionable rule that should have soar buoyant towards din and bunch size vulnerability complication with robotic province-based discernment. During this analysis, AN boost Region hinge utensil -swatting loom is employed to inspect the down fragment and atop fragments of the tumor regions to find the deformity with robotic Region-based discernment. After the victorious wisdom of the tumor part, we will sort the three divergent strains of brain tumors, such as benign and malignant. For that, we are using the convolutional neural network (CNN) method for identifying the above. This analysis pays its expertise in brain deformity discernment and probe in the health care sector without human mediation.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0109953</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2022-10, Vol.2519 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_proquest_journals_2720625687 |
source | AIP Journals Complete |
subjects | Artificial neural networks Brain Image segmentation Neural networks Tumors |
title | Segmentation and identification of brain tumour using region-based segmentation and convolutional neural network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T06%3A06%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Segmentation%20and%20identification%20of%20brain%20tumour%20using%20region-based%20segmentation%20and%20convolutional%20neural%20network&rft.jtitle=AIP%20conference%20proceedings&rft.au=Kristina&rft.date=2022-10-03&rft.volume=2519&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0109953&rft_dat=%3Cproquest_scita%3E2720625687%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2720625687&rft_id=info:pmid/&rfr_iscdi=true |