Foamed geopolymers for fire protection: Burn‐through testing and modeling

Summary Geopolymer (GP) foam as a fire protective coating was synthesized, deposited on a steel plate, hardened and evaluated using a burn‐through test at a reduced scale. It was shown that the GP foam acts as an efficient fire barrier (with 250°C reduction compared to virgin steel evaluated in the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:FIRE AND MATERIALS 2022-11, Vol.46 (7), p.1011-1019
Hauptverfasser: Bourbigot, Serge, Sarazin, Johan, Davy, Catherine A., Fontaine, Gaëlle
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1019
container_issue 7
container_start_page 1011
container_title FIRE AND MATERIALS
container_volume 46
creator Bourbigot, Serge
Sarazin, Johan
Davy, Catherine A.
Fontaine, Gaëlle
description Summary Geopolymer (GP) foam as a fire protective coating was synthesized, deposited on a steel plate, hardened and evaluated using a burn‐through test at a reduced scale. It was shown that the GP foam acts as an efficient fire barrier (with 250°C reduction compared to virgin steel evaluated in the same conditions). A numerical model using Comsol Multiphysics (finite element code) was performed to simulate the fire behavior of the GP foam. It was based on the complete characterization of the GP foam to provide accurate input data for the model. The latter captures well the temperature rise, including the endothermal effect due to water vaporization. A parametric study of the porosity and the emissivity at the surface of the GP foam brings new insights to optimize the performance of the GP foam. It is shown that a porosity of 90% and an emissivity lower than 0.75 should provide the highest performance to GP foam. The fabrication of an optimized GP foam is feasible using a technology of low emissivity thin coating and by adjusting the synthesis of the GP foam to increase its porosity.
doi_str_mv 10.1002/fam.3048
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_proquest_journals_2720299683</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2720299683</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3618-742a75d3adcba5226a17e04e726fc44213c4da924d049b308d996e79b514ea453</originalsourceid><addsrcrecordid>eNp1kE1OwzAUhC0EEqUgcQRLbGCR8vyT2GZXKkoRRWxgbbmx0wYlcXFSUHccgTNyElyC2LF6mqdPo5lB6JTAiADQy8LUIwZc7qEBAaUSAkTuowEwkAmkQA7RUdu-AICUIhug-6k3tbN46fzaV9vahRYXPuCiDA6vg-9c3pW-ucLXm9B8fXx2q-A3yxXuXNuVzRKbxuLaW1dFcYwOClO17uT3DtHz9OZpMkvmj7d3k_E8yVlGZCI4NSK1zNh8YVJKM0OEA-4EzYqcc0pYzq1RlFvgahFzW6UyJ9QiJdwZnrIhuuh9V6bS61DWJmy1N6Wejed69wOWKpaK7I1E9qxnY5fXTQytX3xsEuNpKijQaC1ZpM57Kg--bYMr_mwJ6N2sOs6qd7NGNOnR97Jy2385PR0__PDf3814AQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2720299683</pqid></control><display><type>article</type><title>Foamed geopolymers for fire protection: Burn‐through testing and modeling</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Bourbigot, Serge ; Sarazin, Johan ; Davy, Catherine A. ; Fontaine, Gaëlle</creator><creatorcontrib>Bourbigot, Serge ; Sarazin, Johan ; Davy, Catherine A. ; Fontaine, Gaëlle</creatorcontrib><description>Summary Geopolymer (GP) foam as a fire protective coating was synthesized, deposited on a steel plate, hardened and evaluated using a burn‐through test at a reduced scale. It was shown that the GP foam acts as an efficient fire barrier (with 250°C reduction compared to virgin steel evaluated in the same conditions). A numerical model using Comsol Multiphysics (finite element code) was performed to simulate the fire behavior of the GP foam. It was based on the complete characterization of the GP foam to provide accurate input data for the model. The latter captures well the temperature rise, including the endothermal effect due to water vaporization. A parametric study of the porosity and the emissivity at the surface of the GP foam brings new insights to optimize the performance of the GP foam. It is shown that a porosity of 90% and an emissivity lower than 0.75 should provide the highest performance to GP foam. The fabrication of an optimized GP foam is feasible using a technology of low emissivity thin coating and by adjusting the synthesis of the GP foam to increase its porosity.</description><identifier>ISSN: 0308-0501</identifier><identifier>EISSN: 1099-1018</identifier><identifier>DOI: 10.1002/fam.3048</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Chemical Sciences ; coating ; Emissivity ; Fabrication ; Finite element method ; Fire protection ; geopolymer ; Geopolymers ; Material chemistry ; Mathematical models ; modeling ; Numerical models ; numerical simulation ; Polymers ; Porosity ; Protective coatings ; Steel plates ; Vaporization</subject><ispartof>FIRE AND MATERIALS, 2022-11, Vol.46 (7), p.1011-1019</ispartof><rights>2021 John Wiley &amp; Sons Ltd.</rights><rights>2022 John Wiley &amp; Sons, Ltd.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3618-742a75d3adcba5226a17e04e726fc44213c4da924d049b308d996e79b514ea453</citedby><cites>FETCH-LOGICAL-c3618-742a75d3adcba5226a17e04e726fc44213c4da924d049b308d996e79b514ea453</cites><orcidid>0000-0003-1536-2015 ; 0000-0002-6542-1506 ; 0000-0002-7113-1687</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Ffam.3048$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Ffam.3048$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,777,781,882,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://hal.univ-lille.fr/hal-03593576$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bourbigot, Serge</creatorcontrib><creatorcontrib>Sarazin, Johan</creatorcontrib><creatorcontrib>Davy, Catherine A.</creatorcontrib><creatorcontrib>Fontaine, Gaëlle</creatorcontrib><title>Foamed geopolymers for fire protection: Burn‐through testing and modeling</title><title>FIRE AND MATERIALS</title><description>Summary Geopolymer (GP) foam as a fire protective coating was synthesized, deposited on a steel plate, hardened and evaluated using a burn‐through test at a reduced scale. It was shown that the GP foam acts as an efficient fire barrier (with 250°C reduction compared to virgin steel evaluated in the same conditions). A numerical model using Comsol Multiphysics (finite element code) was performed to simulate the fire behavior of the GP foam. It was based on the complete characterization of the GP foam to provide accurate input data for the model. The latter captures well the temperature rise, including the endothermal effect due to water vaporization. A parametric study of the porosity and the emissivity at the surface of the GP foam brings new insights to optimize the performance of the GP foam. It is shown that a porosity of 90% and an emissivity lower than 0.75 should provide the highest performance to GP foam. The fabrication of an optimized GP foam is feasible using a technology of low emissivity thin coating and by adjusting the synthesis of the GP foam to increase its porosity.</description><subject>Chemical Sciences</subject><subject>coating</subject><subject>Emissivity</subject><subject>Fabrication</subject><subject>Finite element method</subject><subject>Fire protection</subject><subject>geopolymer</subject><subject>Geopolymers</subject><subject>Material chemistry</subject><subject>Mathematical models</subject><subject>modeling</subject><subject>Numerical models</subject><subject>numerical simulation</subject><subject>Polymers</subject><subject>Porosity</subject><subject>Protective coatings</subject><subject>Steel plates</subject><subject>Vaporization</subject><issn>0308-0501</issn><issn>1099-1018</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kE1OwzAUhC0EEqUgcQRLbGCR8vyT2GZXKkoRRWxgbbmx0wYlcXFSUHccgTNyElyC2LF6mqdPo5lB6JTAiADQy8LUIwZc7qEBAaUSAkTuowEwkAmkQA7RUdu-AICUIhug-6k3tbN46fzaV9vahRYXPuCiDA6vg-9c3pW-ucLXm9B8fXx2q-A3yxXuXNuVzRKbxuLaW1dFcYwOClO17uT3DtHz9OZpMkvmj7d3k_E8yVlGZCI4NSK1zNh8YVJKM0OEA-4EzYqcc0pYzq1RlFvgahFzW6UyJ9QiJdwZnrIhuuh9V6bS61DWJmy1N6Wejed69wOWKpaK7I1E9qxnY5fXTQytX3xsEuNpKijQaC1ZpM57Kg--bYMr_mwJ6N2sOs6qd7NGNOnR97Jy2385PR0__PDf3814AQ</recordid><startdate>202211</startdate><enddate>202211</enddate><creator>Bourbigot, Serge</creator><creator>Sarazin, Johan</creator><creator>Davy, Catherine A.</creator><creator>Fontaine, Gaëlle</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T2</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-1536-2015</orcidid><orcidid>https://orcid.org/0000-0002-6542-1506</orcidid><orcidid>https://orcid.org/0000-0002-7113-1687</orcidid></search><sort><creationdate>202211</creationdate><title>Foamed geopolymers for fire protection: Burn‐through testing and modeling</title><author>Bourbigot, Serge ; Sarazin, Johan ; Davy, Catherine A. ; Fontaine, Gaëlle</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3618-742a75d3adcba5226a17e04e726fc44213c4da924d049b308d996e79b514ea453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Chemical Sciences</topic><topic>coating</topic><topic>Emissivity</topic><topic>Fabrication</topic><topic>Finite element method</topic><topic>Fire protection</topic><topic>geopolymer</topic><topic>Geopolymers</topic><topic>Material chemistry</topic><topic>Mathematical models</topic><topic>modeling</topic><topic>Numerical models</topic><topic>numerical simulation</topic><topic>Polymers</topic><topic>Porosity</topic><topic>Protective coatings</topic><topic>Steel plates</topic><topic>Vaporization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bourbigot, Serge</creatorcontrib><creatorcontrib>Sarazin, Johan</creatorcontrib><creatorcontrib>Davy, Catherine A.</creatorcontrib><creatorcontrib>Fontaine, Gaëlle</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>FIRE AND MATERIALS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bourbigot, Serge</au><au>Sarazin, Johan</au><au>Davy, Catherine A.</au><au>Fontaine, Gaëlle</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Foamed geopolymers for fire protection: Burn‐through testing and modeling</atitle><jtitle>FIRE AND MATERIALS</jtitle><date>2022-11</date><risdate>2022</risdate><volume>46</volume><issue>7</issue><spage>1011</spage><epage>1019</epage><pages>1011-1019</pages><issn>0308-0501</issn><eissn>1099-1018</eissn><abstract>Summary Geopolymer (GP) foam as a fire protective coating was synthesized, deposited on a steel plate, hardened and evaluated using a burn‐through test at a reduced scale. It was shown that the GP foam acts as an efficient fire barrier (with 250°C reduction compared to virgin steel evaluated in the same conditions). A numerical model using Comsol Multiphysics (finite element code) was performed to simulate the fire behavior of the GP foam. It was based on the complete characterization of the GP foam to provide accurate input data for the model. The latter captures well the temperature rise, including the endothermal effect due to water vaporization. A parametric study of the porosity and the emissivity at the surface of the GP foam brings new insights to optimize the performance of the GP foam. It is shown that a porosity of 90% and an emissivity lower than 0.75 should provide the highest performance to GP foam. The fabrication of an optimized GP foam is feasible using a technology of low emissivity thin coating and by adjusting the synthesis of the GP foam to increase its porosity.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/fam.3048</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1536-2015</orcidid><orcidid>https://orcid.org/0000-0002-6542-1506</orcidid><orcidid>https://orcid.org/0000-0002-7113-1687</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0308-0501
ispartof FIRE AND MATERIALS, 2022-11, Vol.46 (7), p.1011-1019
issn 0308-0501
1099-1018
language eng
recordid cdi_proquest_journals_2720299683
source Wiley Online Library Journals Frontfile Complete
subjects Chemical Sciences
coating
Emissivity
Fabrication
Finite element method
Fire protection
geopolymer
Geopolymers
Material chemistry
Mathematical models
modeling
Numerical models
numerical simulation
Polymers
Porosity
Protective coatings
Steel plates
Vaporization
title Foamed geopolymers for fire protection: Burn‐through testing and modeling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T04%3A10%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Foamed%20geopolymers%20for%20fire%20protection:%20Burn%E2%80%90through%20testing%20and%20modeling&rft.jtitle=FIRE%20AND%20MATERIALS&rft.au=Bourbigot,%20Serge&rft.date=2022-11&rft.volume=46&rft.issue=7&rft.spage=1011&rft.epage=1019&rft.pages=1011-1019&rft.issn=0308-0501&rft.eissn=1099-1018&rft_id=info:doi/10.1002/fam.3048&rft_dat=%3Cproquest_hal_p%3E2720299683%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2720299683&rft_id=info:pmid/&rfr_iscdi=true