Foamed geopolymers for fire protection: Burn‐through testing and modeling
Summary Geopolymer (GP) foam as a fire protective coating was synthesized, deposited on a steel plate, hardened and evaluated using a burn‐through test at a reduced scale. It was shown that the GP foam acts as an efficient fire barrier (with 250°C reduction compared to virgin steel evaluated in the...
Gespeichert in:
Veröffentlicht in: | FIRE AND MATERIALS 2022-11, Vol.46 (7), p.1011-1019 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1019 |
---|---|
container_issue | 7 |
container_start_page | 1011 |
container_title | FIRE AND MATERIALS |
container_volume | 46 |
creator | Bourbigot, Serge Sarazin, Johan Davy, Catherine A. Fontaine, Gaëlle |
description | Summary
Geopolymer (GP) foam as a fire protective coating was synthesized, deposited on a steel plate, hardened and evaluated using a burn‐through test at a reduced scale. It was shown that the GP foam acts as an efficient fire barrier (with 250°C reduction compared to virgin steel evaluated in the same conditions). A numerical model using Comsol Multiphysics (finite element code) was performed to simulate the fire behavior of the GP foam. It was based on the complete characterization of the GP foam to provide accurate input data for the model. The latter captures well the temperature rise, including the endothermal effect due to water vaporization. A parametric study of the porosity and the emissivity at the surface of the GP foam brings new insights to optimize the performance of the GP foam. It is shown that a porosity of 90% and an emissivity lower than 0.75 should provide the highest performance to GP foam. The fabrication of an optimized GP foam is feasible using a technology of low emissivity thin coating and by adjusting the synthesis of the GP foam to increase its porosity. |
doi_str_mv | 10.1002/fam.3048 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_proquest_journals_2720299683</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2720299683</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3618-742a75d3adcba5226a17e04e726fc44213c4da924d049b308d996e79b514ea453</originalsourceid><addsrcrecordid>eNp1kE1OwzAUhC0EEqUgcQRLbGCR8vyT2GZXKkoRRWxgbbmx0wYlcXFSUHccgTNyElyC2LF6mqdPo5lB6JTAiADQy8LUIwZc7qEBAaUSAkTuowEwkAmkQA7RUdu-AICUIhug-6k3tbN46fzaV9vahRYXPuCiDA6vg-9c3pW-ucLXm9B8fXx2q-A3yxXuXNuVzRKbxuLaW1dFcYwOClO17uT3DtHz9OZpMkvmj7d3k_E8yVlGZCI4NSK1zNh8YVJKM0OEA-4EzYqcc0pYzq1RlFvgahFzW6UyJ9QiJdwZnrIhuuh9V6bS61DWJmy1N6Wejed69wOWKpaK7I1E9qxnY5fXTQytX3xsEuNpKijQaC1ZpM57Kg--bYMr_mwJ6N2sOs6qd7NGNOnR97Jy2385PR0__PDf3814AQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2720299683</pqid></control><display><type>article</type><title>Foamed geopolymers for fire protection: Burn‐through testing and modeling</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Bourbigot, Serge ; Sarazin, Johan ; Davy, Catherine A. ; Fontaine, Gaëlle</creator><creatorcontrib>Bourbigot, Serge ; Sarazin, Johan ; Davy, Catherine A. ; Fontaine, Gaëlle</creatorcontrib><description>Summary
Geopolymer (GP) foam as a fire protective coating was synthesized, deposited on a steel plate, hardened and evaluated using a burn‐through test at a reduced scale. It was shown that the GP foam acts as an efficient fire barrier (with 250°C reduction compared to virgin steel evaluated in the same conditions). A numerical model using Comsol Multiphysics (finite element code) was performed to simulate the fire behavior of the GP foam. It was based on the complete characterization of the GP foam to provide accurate input data for the model. The latter captures well the temperature rise, including the endothermal effect due to water vaporization. A parametric study of the porosity and the emissivity at the surface of the GP foam brings new insights to optimize the performance of the GP foam. It is shown that a porosity of 90% and an emissivity lower than 0.75 should provide the highest performance to GP foam. The fabrication of an optimized GP foam is feasible using a technology of low emissivity thin coating and by adjusting the synthesis of the GP foam to increase its porosity.</description><identifier>ISSN: 0308-0501</identifier><identifier>EISSN: 1099-1018</identifier><identifier>DOI: 10.1002/fam.3048</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Chemical Sciences ; coating ; Emissivity ; Fabrication ; Finite element method ; Fire protection ; geopolymer ; Geopolymers ; Material chemistry ; Mathematical models ; modeling ; Numerical models ; numerical simulation ; Polymers ; Porosity ; Protective coatings ; Steel plates ; Vaporization</subject><ispartof>FIRE AND MATERIALS, 2022-11, Vol.46 (7), p.1011-1019</ispartof><rights>2021 John Wiley & Sons Ltd.</rights><rights>2022 John Wiley & Sons, Ltd.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3618-742a75d3adcba5226a17e04e726fc44213c4da924d049b308d996e79b514ea453</citedby><cites>FETCH-LOGICAL-c3618-742a75d3adcba5226a17e04e726fc44213c4da924d049b308d996e79b514ea453</cites><orcidid>0000-0003-1536-2015 ; 0000-0002-6542-1506 ; 0000-0002-7113-1687</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Ffam.3048$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Ffam.3048$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,777,781,882,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://hal.univ-lille.fr/hal-03593576$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bourbigot, Serge</creatorcontrib><creatorcontrib>Sarazin, Johan</creatorcontrib><creatorcontrib>Davy, Catherine A.</creatorcontrib><creatorcontrib>Fontaine, Gaëlle</creatorcontrib><title>Foamed geopolymers for fire protection: Burn‐through testing and modeling</title><title>FIRE AND MATERIALS</title><description>Summary
Geopolymer (GP) foam as a fire protective coating was synthesized, deposited on a steel plate, hardened and evaluated using a burn‐through test at a reduced scale. It was shown that the GP foam acts as an efficient fire barrier (with 250°C reduction compared to virgin steel evaluated in the same conditions). A numerical model using Comsol Multiphysics (finite element code) was performed to simulate the fire behavior of the GP foam. It was based on the complete characterization of the GP foam to provide accurate input data for the model. The latter captures well the temperature rise, including the endothermal effect due to water vaporization. A parametric study of the porosity and the emissivity at the surface of the GP foam brings new insights to optimize the performance of the GP foam. It is shown that a porosity of 90% and an emissivity lower than 0.75 should provide the highest performance to GP foam. The fabrication of an optimized GP foam is feasible using a technology of low emissivity thin coating and by adjusting the synthesis of the GP foam to increase its porosity.</description><subject>Chemical Sciences</subject><subject>coating</subject><subject>Emissivity</subject><subject>Fabrication</subject><subject>Finite element method</subject><subject>Fire protection</subject><subject>geopolymer</subject><subject>Geopolymers</subject><subject>Material chemistry</subject><subject>Mathematical models</subject><subject>modeling</subject><subject>Numerical models</subject><subject>numerical simulation</subject><subject>Polymers</subject><subject>Porosity</subject><subject>Protective coatings</subject><subject>Steel plates</subject><subject>Vaporization</subject><issn>0308-0501</issn><issn>1099-1018</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kE1OwzAUhC0EEqUgcQRLbGCR8vyT2GZXKkoRRWxgbbmx0wYlcXFSUHccgTNyElyC2LF6mqdPo5lB6JTAiADQy8LUIwZc7qEBAaUSAkTuowEwkAmkQA7RUdu-AICUIhug-6k3tbN46fzaV9vahRYXPuCiDA6vg-9c3pW-ucLXm9B8fXx2q-A3yxXuXNuVzRKbxuLaW1dFcYwOClO17uT3DtHz9OZpMkvmj7d3k_E8yVlGZCI4NSK1zNh8YVJKM0OEA-4EzYqcc0pYzq1RlFvgahFzW6UyJ9QiJdwZnrIhuuh9V6bS61DWJmy1N6Wejed69wOWKpaK7I1E9qxnY5fXTQytX3xsEuNpKijQaC1ZpM57Kg--bYMr_mwJ6N2sOs6qd7NGNOnR97Jy2385PR0__PDf3814AQ</recordid><startdate>202211</startdate><enddate>202211</enddate><creator>Bourbigot, Serge</creator><creator>Sarazin, Johan</creator><creator>Davy, Catherine A.</creator><creator>Fontaine, Gaëlle</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T2</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-1536-2015</orcidid><orcidid>https://orcid.org/0000-0002-6542-1506</orcidid><orcidid>https://orcid.org/0000-0002-7113-1687</orcidid></search><sort><creationdate>202211</creationdate><title>Foamed geopolymers for fire protection: Burn‐through testing and modeling</title><author>Bourbigot, Serge ; Sarazin, Johan ; Davy, Catherine A. ; Fontaine, Gaëlle</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3618-742a75d3adcba5226a17e04e726fc44213c4da924d049b308d996e79b514ea453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Chemical Sciences</topic><topic>coating</topic><topic>Emissivity</topic><topic>Fabrication</topic><topic>Finite element method</topic><topic>Fire protection</topic><topic>geopolymer</topic><topic>Geopolymers</topic><topic>Material chemistry</topic><topic>Mathematical models</topic><topic>modeling</topic><topic>Numerical models</topic><topic>numerical simulation</topic><topic>Polymers</topic><topic>Porosity</topic><topic>Protective coatings</topic><topic>Steel plates</topic><topic>Vaporization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bourbigot, Serge</creatorcontrib><creatorcontrib>Sarazin, Johan</creatorcontrib><creatorcontrib>Davy, Catherine A.</creatorcontrib><creatorcontrib>Fontaine, Gaëlle</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>FIRE AND MATERIALS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bourbigot, Serge</au><au>Sarazin, Johan</au><au>Davy, Catherine A.</au><au>Fontaine, Gaëlle</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Foamed geopolymers for fire protection: Burn‐through testing and modeling</atitle><jtitle>FIRE AND MATERIALS</jtitle><date>2022-11</date><risdate>2022</risdate><volume>46</volume><issue>7</issue><spage>1011</spage><epage>1019</epage><pages>1011-1019</pages><issn>0308-0501</issn><eissn>1099-1018</eissn><abstract>Summary
Geopolymer (GP) foam as a fire protective coating was synthesized, deposited on a steel plate, hardened and evaluated using a burn‐through test at a reduced scale. It was shown that the GP foam acts as an efficient fire barrier (with 250°C reduction compared to virgin steel evaluated in the same conditions). A numerical model using Comsol Multiphysics (finite element code) was performed to simulate the fire behavior of the GP foam. It was based on the complete characterization of the GP foam to provide accurate input data for the model. The latter captures well the temperature rise, including the endothermal effect due to water vaporization. A parametric study of the porosity and the emissivity at the surface of the GP foam brings new insights to optimize the performance of the GP foam. It is shown that a porosity of 90% and an emissivity lower than 0.75 should provide the highest performance to GP foam. The fabrication of an optimized GP foam is feasible using a technology of low emissivity thin coating and by adjusting the synthesis of the GP foam to increase its porosity.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/fam.3048</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1536-2015</orcidid><orcidid>https://orcid.org/0000-0002-6542-1506</orcidid><orcidid>https://orcid.org/0000-0002-7113-1687</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0308-0501 |
ispartof | FIRE AND MATERIALS, 2022-11, Vol.46 (7), p.1011-1019 |
issn | 0308-0501 1099-1018 |
language | eng |
recordid | cdi_proquest_journals_2720299683 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Chemical Sciences coating Emissivity Fabrication Finite element method Fire protection geopolymer Geopolymers Material chemistry Mathematical models modeling Numerical models numerical simulation Polymers Porosity Protective coatings Steel plates Vaporization |
title | Foamed geopolymers for fire protection: Burn‐through testing and modeling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T04%3A10%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Foamed%20geopolymers%20for%20fire%20protection:%20Burn%E2%80%90through%20testing%20and%20modeling&rft.jtitle=FIRE%20AND%20MATERIALS&rft.au=Bourbigot,%20Serge&rft.date=2022-11&rft.volume=46&rft.issue=7&rft.spage=1011&rft.epage=1019&rft.pages=1011-1019&rft.issn=0308-0501&rft.eissn=1099-1018&rft_id=info:doi/10.1002/fam.3048&rft_dat=%3Cproquest_hal_p%3E2720299683%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2720299683&rft_id=info:pmid/&rfr_iscdi=true |