A weights direct determination neuronet for time‐series with applications in the industrial indices of the Federal Reserve Bank of St. Louis
The shortcomings of conventional back‐propagation neuronets, such as slow training speed and local minimum, are known to be addressed by neuronets trained under the weights‐and‐structure‐determination (WASD) algorithm. Derived from power activation feed‐forward neuronets, a multi‐input WASD for time...
Gespeichert in:
Veröffentlicht in: | Journal of forecasting 2022-11, Vol.41 (7), p.1512-1524 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1524 |
---|---|
container_issue | 7 |
container_start_page | 1512 |
container_title | Journal of forecasting |
container_volume | 41 |
creator | Mourtas, Spyridon D. |
description | The shortcomings of conventional back‐propagation neuronets, such as slow training speed and local minimum, are known to be addressed by neuronets trained under the weights‐and‐structure‐determination (WASD) algorithm. Derived from power activation feed‐forward neuronets, a multi‐input WASD for time‐series neuronet (MI‐WASDTSN) model is presented in this paper. The MI‐WASDTSN is equipped with a novel WASD for time‐series (WASDTS) algorithm, for handling time‐series modeling and forecasting problems. Employing a power sigmoid activation function, the WASDTS algorithm handles the model fitting and validation by determining the optimal input variables number and the weights of the MI‐WASDTSN. More specifically, the WASDTS algorithm finds and holds only the activation function powers that reduce the model's error during validation. Applications on Federal Reserve Bank of St. Louis (FRED) industrial indices under three different patterns of time‐series validate our MI‐WASDTSN model in order to demonstrate its outstanding learning and forecasting performance. In addition, to support and advance the findings of this work, we created a MATLAB repository for interested users, which is freely available via GitHub. |
doi_str_mv | 10.1002/for.2874 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2720221480</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2720221480</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2814-42d2e302edef5d8fc28e821e27f725fec7ee4831c54cdcaea31ce9785bf432e03</originalsourceid><addsrcrecordid>eNp1kM9KAzEQh4MoWKvgIwS8eNmazO426bEWq0Kh4B_wtqzZiU1tNzXJWnrzCcRn9EnMtoInTzPM7-Mb-BFyylmPMwYX2roeSJHtkQ5ng0HCU_60TzoMhEj6_UF6SI68nzPGhOTQIZ9DukbzMgueVsahCrTCgG5p6jIYW9MaG2drDDR6aTBL_P748ugMero2YUbL1Wph1Jb11NQ0zDCOqvHBmXLRrkZF1uptMsYKXTzfYXS8I70s69c2uw89OrGN8cfkQJcLjye_s0sex1cPo5tkMr2-HQ0niQLJsySDCjBlEHU6r6SOV5TAEYQWkGtUAjGTKVd5pipVYhlXHAiZP-ssBWRpl5ztvCtn3xr0oZjbxtXxZQECGADPZEud7yjlrPcOdbFyZlm6TcFZ0bZdxFaKtu2I0h2KytbG_4ESRC5T4HlEkh2yNgvc_KsqxtO7rfIHUumOwQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2720221480</pqid></control><display><type>article</type><title>A weights direct determination neuronet for time‐series with applications in the industrial indices of the Federal Reserve Bank of St. Louis</title><source>EBSCOhost Business Source Complete</source><source>Access via Wiley Online Library</source><creator>Mourtas, Spyridon D.</creator><creatorcontrib>Mourtas, Spyridon D.</creatorcontrib><description>The shortcomings of conventional back‐propagation neuronets, such as slow training speed and local minimum, are known to be addressed by neuronets trained under the weights‐and‐structure‐determination (WASD) algorithm. Derived from power activation feed‐forward neuronets, a multi‐input WASD for time‐series neuronet (MI‐WASDTSN) model is presented in this paper. The MI‐WASDTSN is equipped with a novel WASD for time‐series (WASDTS) algorithm, for handling time‐series modeling and forecasting problems. Employing a power sigmoid activation function, the WASDTS algorithm handles the model fitting and validation by determining the optimal input variables number and the weights of the MI‐WASDTSN. More specifically, the WASDTS algorithm finds and holds only the activation function powers that reduce the model's error during validation. Applications on Federal Reserve Bank of St. Louis (FRED) industrial indices under three different patterns of time‐series validate our MI‐WASDTSN model in order to demonstrate its outstanding learning and forecasting performance. In addition, to support and advance the findings of this work, we created a MATLAB repository for interested users, which is freely available via GitHub.</description><identifier>ISSN: 0277-6693</identifier><identifier>EISSN: 1099-131X</identifier><identifier>DOI: 10.1002/for.2874</identifier><language>eng</language><publisher>Chichester: Wiley Periodicals Inc</publisher><subject>Algorithms ; Central banks ; industrial indices ; neural networks ; Power ; time‐series forecasting ; WASD neuronet</subject><ispartof>Journal of forecasting, 2022-11, Vol.41 (7), p.1512-1524</ispartof><rights>2022 John Wiley & Sons Ltd.</rights><rights>2022 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2814-42d2e302edef5d8fc28e821e27f725fec7ee4831c54cdcaea31ce9785bf432e03</citedby><cites>FETCH-LOGICAL-c2814-42d2e302edef5d8fc28e821e27f725fec7ee4831c54cdcaea31ce9785bf432e03</cites><orcidid>0000-0002-8299-9916</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Ffor.2874$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Ffor.2874$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Mourtas, Spyridon D.</creatorcontrib><title>A weights direct determination neuronet for time‐series with applications in the industrial indices of the Federal Reserve Bank of St. Louis</title><title>Journal of forecasting</title><description>The shortcomings of conventional back‐propagation neuronets, such as slow training speed and local minimum, are known to be addressed by neuronets trained under the weights‐and‐structure‐determination (WASD) algorithm. Derived from power activation feed‐forward neuronets, a multi‐input WASD for time‐series neuronet (MI‐WASDTSN) model is presented in this paper. The MI‐WASDTSN is equipped with a novel WASD for time‐series (WASDTS) algorithm, for handling time‐series modeling and forecasting problems. Employing a power sigmoid activation function, the WASDTS algorithm handles the model fitting and validation by determining the optimal input variables number and the weights of the MI‐WASDTSN. More specifically, the WASDTS algorithm finds and holds only the activation function powers that reduce the model's error during validation. Applications on Federal Reserve Bank of St. Louis (FRED) industrial indices under three different patterns of time‐series validate our MI‐WASDTSN model in order to demonstrate its outstanding learning and forecasting performance. In addition, to support and advance the findings of this work, we created a MATLAB repository for interested users, which is freely available via GitHub.</description><subject>Algorithms</subject><subject>Central banks</subject><subject>industrial indices</subject><subject>neural networks</subject><subject>Power</subject><subject>time‐series forecasting</subject><subject>WASD neuronet</subject><issn>0277-6693</issn><issn>1099-131X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kM9KAzEQh4MoWKvgIwS8eNmazO426bEWq0Kh4B_wtqzZiU1tNzXJWnrzCcRn9EnMtoInTzPM7-Mb-BFyylmPMwYX2roeSJHtkQ5ng0HCU_60TzoMhEj6_UF6SI68nzPGhOTQIZ9DukbzMgueVsahCrTCgG5p6jIYW9MaG2drDDR6aTBL_P748ugMero2YUbL1Wph1Jb11NQ0zDCOqvHBmXLRrkZF1uptMsYKXTzfYXS8I70s69c2uw89OrGN8cfkQJcLjye_s0sex1cPo5tkMr2-HQ0niQLJsySDCjBlEHU6r6SOV5TAEYQWkGtUAjGTKVd5pipVYhlXHAiZP-ssBWRpl5ztvCtn3xr0oZjbxtXxZQECGADPZEud7yjlrPcOdbFyZlm6TcFZ0bZdxFaKtu2I0h2KytbG_4ESRC5T4HlEkh2yNgvc_KsqxtO7rfIHUumOwQ</recordid><startdate>202211</startdate><enddate>202211</enddate><creator>Mourtas, Spyridon D.</creator><general>Wiley Periodicals Inc</general><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><orcidid>https://orcid.org/0000-0002-8299-9916</orcidid></search><sort><creationdate>202211</creationdate><title>A weights direct determination neuronet for time‐series with applications in the industrial indices of the Federal Reserve Bank of St. Louis</title><author>Mourtas, Spyridon D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2814-42d2e302edef5d8fc28e821e27f725fec7ee4831c54cdcaea31ce9785bf432e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Central banks</topic><topic>industrial indices</topic><topic>neural networks</topic><topic>Power</topic><topic>time‐series forecasting</topic><topic>WASD neuronet</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mourtas, Spyridon D.</creatorcontrib><collection>ECONIS</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Journal of forecasting</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mourtas, Spyridon D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A weights direct determination neuronet for time‐series with applications in the industrial indices of the Federal Reserve Bank of St. Louis</atitle><jtitle>Journal of forecasting</jtitle><date>2022-11</date><risdate>2022</risdate><volume>41</volume><issue>7</issue><spage>1512</spage><epage>1524</epage><pages>1512-1524</pages><issn>0277-6693</issn><eissn>1099-131X</eissn><abstract>The shortcomings of conventional back‐propagation neuronets, such as slow training speed and local minimum, are known to be addressed by neuronets trained under the weights‐and‐structure‐determination (WASD) algorithm. Derived from power activation feed‐forward neuronets, a multi‐input WASD for time‐series neuronet (MI‐WASDTSN) model is presented in this paper. The MI‐WASDTSN is equipped with a novel WASD for time‐series (WASDTS) algorithm, for handling time‐series modeling and forecasting problems. Employing a power sigmoid activation function, the WASDTS algorithm handles the model fitting and validation by determining the optimal input variables number and the weights of the MI‐WASDTSN. More specifically, the WASDTS algorithm finds and holds only the activation function powers that reduce the model's error during validation. Applications on Federal Reserve Bank of St. Louis (FRED) industrial indices under three different patterns of time‐series validate our MI‐WASDTSN model in order to demonstrate its outstanding learning and forecasting performance. In addition, to support and advance the findings of this work, we created a MATLAB repository for interested users, which is freely available via GitHub.</abstract><cop>Chichester</cop><pub>Wiley Periodicals Inc</pub><doi>10.1002/for.2874</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-8299-9916</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0277-6693 |
ispartof | Journal of forecasting, 2022-11, Vol.41 (7), p.1512-1524 |
issn | 0277-6693 1099-131X |
language | eng |
recordid | cdi_proquest_journals_2720221480 |
source | EBSCOhost Business Source Complete; Access via Wiley Online Library |
subjects | Algorithms Central banks industrial indices neural networks Power time‐series forecasting WASD neuronet |
title | A weights direct determination neuronet for time‐series with applications in the industrial indices of the Federal Reserve Bank of St. Louis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T10%3A53%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20weights%20direct%20determination%20neuronet%20for%20time%E2%80%90series%20with%20applications%20in%20the%20industrial%20indices%20of%20the%20Federal%20Reserve%20Bank%20of%20St.%20Louis&rft.jtitle=Journal%20of%20forecasting&rft.au=Mourtas,%20Spyridon%20D.&rft.date=2022-11&rft.volume=41&rft.issue=7&rft.spage=1512&rft.epage=1524&rft.pages=1512-1524&rft.issn=0277-6693&rft.eissn=1099-131X&rft_id=info:doi/10.1002/for.2874&rft_dat=%3Cproquest_cross%3E2720221480%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2720221480&rft_id=info:pmid/&rfr_iscdi=true |