A weights direct determination neuronet for time‐series with applications in the industrial indices of the Federal Reserve Bank of St. Louis

The shortcomings of conventional back‐propagation neuronets, such as slow training speed and local minimum, are known to be addressed by neuronets trained under the weights‐and‐structure‐determination (WASD) algorithm. Derived from power activation feed‐forward neuronets, a multi‐input WASD for time...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of forecasting 2022-11, Vol.41 (7), p.1512-1524
1. Verfasser: Mourtas, Spyridon D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1524
container_issue 7
container_start_page 1512
container_title Journal of forecasting
container_volume 41
creator Mourtas, Spyridon D.
description The shortcomings of conventional back‐propagation neuronets, such as slow training speed and local minimum, are known to be addressed by neuronets trained under the weights‐and‐structure‐determination (WASD) algorithm. Derived from power activation feed‐forward neuronets, a multi‐input WASD for time‐series neuronet (MI‐WASDTSN) model is presented in this paper. The MI‐WASDTSN is equipped with a novel WASD for time‐series (WASDTS) algorithm, for handling time‐series modeling and forecasting problems. Employing a power sigmoid activation function, the WASDTS algorithm handles the model fitting and validation by determining the optimal input variables number and the weights of the MI‐WASDTSN. More specifically, the WASDTS algorithm finds and holds only the activation function powers that reduce the model's error during validation. Applications on Federal Reserve Bank of St. Louis (FRED) industrial indices under three different patterns of time‐series validate our MI‐WASDTSN model in order to demonstrate its outstanding learning and forecasting performance. In addition, to support and advance the findings of this work, we created a MATLAB repository for interested users, which is freely available via GitHub.
doi_str_mv 10.1002/for.2874
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2720221480</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2720221480</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2814-42d2e302edef5d8fc28e821e27f725fec7ee4831c54cdcaea31ce9785bf432e03</originalsourceid><addsrcrecordid>eNp1kM9KAzEQh4MoWKvgIwS8eNmazO426bEWq0Kh4B_wtqzZiU1tNzXJWnrzCcRn9EnMtoInTzPM7-Mb-BFyylmPMwYX2roeSJHtkQ5ng0HCU_60TzoMhEj6_UF6SI68nzPGhOTQIZ9DukbzMgueVsahCrTCgG5p6jIYW9MaG2drDDR6aTBL_P748ugMero2YUbL1Wph1Jb11NQ0zDCOqvHBmXLRrkZF1uptMsYKXTzfYXS8I70s69c2uw89OrGN8cfkQJcLjye_s0sex1cPo5tkMr2-HQ0niQLJsySDCjBlEHU6r6SOV5TAEYQWkGtUAjGTKVd5pipVYhlXHAiZP-ssBWRpl5ztvCtn3xr0oZjbxtXxZQECGADPZEud7yjlrPcOdbFyZlm6TcFZ0bZdxFaKtu2I0h2KytbG_4ESRC5T4HlEkh2yNgvc_KsqxtO7rfIHUumOwQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2720221480</pqid></control><display><type>article</type><title>A weights direct determination neuronet for time‐series with applications in the industrial indices of the Federal Reserve Bank of St. Louis</title><source>EBSCOhost Business Source Complete</source><source>Access via Wiley Online Library</source><creator>Mourtas, Spyridon D.</creator><creatorcontrib>Mourtas, Spyridon D.</creatorcontrib><description>The shortcomings of conventional back‐propagation neuronets, such as slow training speed and local minimum, are known to be addressed by neuronets trained under the weights‐and‐structure‐determination (WASD) algorithm. Derived from power activation feed‐forward neuronets, a multi‐input WASD for time‐series neuronet (MI‐WASDTSN) model is presented in this paper. The MI‐WASDTSN is equipped with a novel WASD for time‐series (WASDTS) algorithm, for handling time‐series modeling and forecasting problems. Employing a power sigmoid activation function, the WASDTS algorithm handles the model fitting and validation by determining the optimal input variables number and the weights of the MI‐WASDTSN. More specifically, the WASDTS algorithm finds and holds only the activation function powers that reduce the model's error during validation. Applications on Federal Reserve Bank of St. Louis (FRED) industrial indices under three different patterns of time‐series validate our MI‐WASDTSN model in order to demonstrate its outstanding learning and forecasting performance. In addition, to support and advance the findings of this work, we created a MATLAB repository for interested users, which is freely available via GitHub.</description><identifier>ISSN: 0277-6693</identifier><identifier>EISSN: 1099-131X</identifier><identifier>DOI: 10.1002/for.2874</identifier><language>eng</language><publisher>Chichester: Wiley Periodicals Inc</publisher><subject>Algorithms ; Central banks ; industrial indices ; neural networks ; Power ; time‐series forecasting ; WASD neuronet</subject><ispartof>Journal of forecasting, 2022-11, Vol.41 (7), p.1512-1524</ispartof><rights>2022 John Wiley &amp; Sons Ltd.</rights><rights>2022 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2814-42d2e302edef5d8fc28e821e27f725fec7ee4831c54cdcaea31ce9785bf432e03</citedby><cites>FETCH-LOGICAL-c2814-42d2e302edef5d8fc28e821e27f725fec7ee4831c54cdcaea31ce9785bf432e03</cites><orcidid>0000-0002-8299-9916</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Ffor.2874$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Ffor.2874$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Mourtas, Spyridon D.</creatorcontrib><title>A weights direct determination neuronet for time‐series with applications in the industrial indices of the Federal Reserve Bank of St. Louis</title><title>Journal of forecasting</title><description>The shortcomings of conventional back‐propagation neuronets, such as slow training speed and local minimum, are known to be addressed by neuronets trained under the weights‐and‐structure‐determination (WASD) algorithm. Derived from power activation feed‐forward neuronets, a multi‐input WASD for time‐series neuronet (MI‐WASDTSN) model is presented in this paper. The MI‐WASDTSN is equipped with a novel WASD for time‐series (WASDTS) algorithm, for handling time‐series modeling and forecasting problems. Employing a power sigmoid activation function, the WASDTS algorithm handles the model fitting and validation by determining the optimal input variables number and the weights of the MI‐WASDTSN. More specifically, the WASDTS algorithm finds and holds only the activation function powers that reduce the model's error during validation. Applications on Federal Reserve Bank of St. Louis (FRED) industrial indices under three different patterns of time‐series validate our MI‐WASDTSN model in order to demonstrate its outstanding learning and forecasting performance. In addition, to support and advance the findings of this work, we created a MATLAB repository for interested users, which is freely available via GitHub.</description><subject>Algorithms</subject><subject>Central banks</subject><subject>industrial indices</subject><subject>neural networks</subject><subject>Power</subject><subject>time‐series forecasting</subject><subject>WASD neuronet</subject><issn>0277-6693</issn><issn>1099-131X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kM9KAzEQh4MoWKvgIwS8eNmazO426bEWq0Kh4B_wtqzZiU1tNzXJWnrzCcRn9EnMtoInTzPM7-Mb-BFyylmPMwYX2roeSJHtkQ5ng0HCU_60TzoMhEj6_UF6SI68nzPGhOTQIZ9DukbzMgueVsahCrTCgG5p6jIYW9MaG2drDDR6aTBL_P748ugMero2YUbL1Wph1Jb11NQ0zDCOqvHBmXLRrkZF1uptMsYKXTzfYXS8I70s69c2uw89OrGN8cfkQJcLjye_s0sex1cPo5tkMr2-HQ0niQLJsySDCjBlEHU6r6SOV5TAEYQWkGtUAjGTKVd5pipVYhlXHAiZP-ssBWRpl5ztvCtn3xr0oZjbxtXxZQECGADPZEud7yjlrPcOdbFyZlm6TcFZ0bZdxFaKtu2I0h2KytbG_4ESRC5T4HlEkh2yNgvc_KsqxtO7rfIHUumOwQ</recordid><startdate>202211</startdate><enddate>202211</enddate><creator>Mourtas, Spyridon D.</creator><general>Wiley Periodicals Inc</general><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><orcidid>https://orcid.org/0000-0002-8299-9916</orcidid></search><sort><creationdate>202211</creationdate><title>A weights direct determination neuronet for time‐series with applications in the industrial indices of the Federal Reserve Bank of St. Louis</title><author>Mourtas, Spyridon D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2814-42d2e302edef5d8fc28e821e27f725fec7ee4831c54cdcaea31ce9785bf432e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Central banks</topic><topic>industrial indices</topic><topic>neural networks</topic><topic>Power</topic><topic>time‐series forecasting</topic><topic>WASD neuronet</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mourtas, Spyridon D.</creatorcontrib><collection>ECONIS</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Journal of forecasting</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mourtas, Spyridon D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A weights direct determination neuronet for time‐series with applications in the industrial indices of the Federal Reserve Bank of St. Louis</atitle><jtitle>Journal of forecasting</jtitle><date>2022-11</date><risdate>2022</risdate><volume>41</volume><issue>7</issue><spage>1512</spage><epage>1524</epage><pages>1512-1524</pages><issn>0277-6693</issn><eissn>1099-131X</eissn><abstract>The shortcomings of conventional back‐propagation neuronets, such as slow training speed and local minimum, are known to be addressed by neuronets trained under the weights‐and‐structure‐determination (WASD) algorithm. Derived from power activation feed‐forward neuronets, a multi‐input WASD for time‐series neuronet (MI‐WASDTSN) model is presented in this paper. The MI‐WASDTSN is equipped with a novel WASD for time‐series (WASDTS) algorithm, for handling time‐series modeling and forecasting problems. Employing a power sigmoid activation function, the WASDTS algorithm handles the model fitting and validation by determining the optimal input variables number and the weights of the MI‐WASDTSN. More specifically, the WASDTS algorithm finds and holds only the activation function powers that reduce the model's error during validation. Applications on Federal Reserve Bank of St. Louis (FRED) industrial indices under three different patterns of time‐series validate our MI‐WASDTSN model in order to demonstrate its outstanding learning and forecasting performance. In addition, to support and advance the findings of this work, we created a MATLAB repository for interested users, which is freely available via GitHub.</abstract><cop>Chichester</cop><pub>Wiley Periodicals Inc</pub><doi>10.1002/for.2874</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-8299-9916</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0277-6693
ispartof Journal of forecasting, 2022-11, Vol.41 (7), p.1512-1524
issn 0277-6693
1099-131X
language eng
recordid cdi_proquest_journals_2720221480
source EBSCOhost Business Source Complete; Access via Wiley Online Library
subjects Algorithms
Central banks
industrial indices
neural networks
Power
time‐series forecasting
WASD neuronet
title A weights direct determination neuronet for time‐series with applications in the industrial indices of the Federal Reserve Bank of St. Louis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T10%3A53%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20weights%20direct%20determination%20neuronet%20for%20time%E2%80%90series%20with%20applications%20in%20the%20industrial%20indices%20of%20the%20Federal%20Reserve%20Bank%20of%20St.%20Louis&rft.jtitle=Journal%20of%20forecasting&rft.au=Mourtas,%20Spyridon%20D.&rft.date=2022-11&rft.volume=41&rft.issue=7&rft.spage=1512&rft.epage=1524&rft.pages=1512-1524&rft.issn=0277-6693&rft.eissn=1099-131X&rft_id=info:doi/10.1002/for.2874&rft_dat=%3Cproquest_cross%3E2720221480%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2720221480&rft_id=info:pmid/&rfr_iscdi=true