Arbitrary-shaped scene text detection by predicting distance map
Natural scene text detection is a challenging task, and the existing quadrilateral bounding box regression-based methods enable the location of horizontal and multi-oriented texts but have great difficulties in locating arbitrary-shaped texts due to the limited shape of the quadrilateral bounding bo...
Gespeichert in:
Veröffentlicht in: | Applied intelligence (Dordrecht, Netherlands) Netherlands), 2022-09, Vol.52 (12), p.14374-14386 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14386 |
---|---|
container_issue | 12 |
container_start_page | 14374 |
container_title | Applied intelligence (Dordrecht, Netherlands) |
container_volume | 52 |
creator | Wang, Xinyu Yi, Yaohua Peng, Jibing Wang, Kaili |
description | Natural scene text detection is a challenging task, and the existing quadrilateral bounding box regression-based methods enable the location of horizontal and multi-oriented texts but have great difficulties in locating arbitrary-shaped texts due to the limited shape of the quadrilateral bounding box template. Previous segmentation-based methods, which conduct pixel-level classification and separate adjacent texts by predicting center lines with fixed widths, are able to locate the boundaries of arbitrary-shaped texts. However, the detected text regions may stick together or break into multiple areas with sub-optimal results while the width of the center lines is not appropriate. In this paper, a novel natural scene text detector based on distance map is proposed. The method can detect arbitrary-shaped texts more flexibly and robustly by adjusting the width of the center line. Experimental results on several datasets demonstrate that the proposed method is more competitive than the methods based on fixed-width center lines and obtains state-of-the-art or comparable performance on CTW1500, ICDAR2015 and Total-Text. Notably, the proposed method achieves F-measures of 85.4% on the ICDAR 2015 dataset and 81.6% on the Total-Text dataset. Code is available at:
https://github.com/Whu-wxy/DistNet
. |
doi_str_mv | 10.1007/s10489-021-03065-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2719933435</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2719933435</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-1c7d5d63f265547e3916db79e4096a221511f1c8737dbe040b02754a0db843863</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8Fz9GZfDY3l8UvWPCi4C20Tbp2cduaZMH11xut4M3TMPA-7zAPIecIlwigryKCKA0FhhQ4KEk_D8gMpeZUC6MPyQwME1Qp83JMTmLcAADngDNyvQh1l0IV9jS-VqN3RWx874vkP1LhfPJN6oa-qPfFGLzr8tavC9fFVPWNL7bVeEqO2uot-rPfOSfPtzdPy3u6erx7WC5WtOFoEsVGO-kUb5mSUmjPDSpXa-MFGFUxhhKxxabUXLvag4AamJaiAleXgpeKz8nF1DuG4X3nY7KbYRf6fNIyjcZwLrjMKTalmjDEGHxrx9Bt83cWwX6bspMpm03ZH1P2M0N8gmIO92sf_qr_ob4A8kFrCA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2719933435</pqid></control><display><type>article</type><title>Arbitrary-shaped scene text detection by predicting distance map</title><source>Springer Nature - Complete Springer Journals</source><creator>Wang, Xinyu ; Yi, Yaohua ; Peng, Jibing ; Wang, Kaili</creator><creatorcontrib>Wang, Xinyu ; Yi, Yaohua ; Peng, Jibing ; Wang, Kaili</creatorcontrib><description>Natural scene text detection is a challenging task, and the existing quadrilateral bounding box regression-based methods enable the location of horizontal and multi-oriented texts but have great difficulties in locating arbitrary-shaped texts due to the limited shape of the quadrilateral bounding box template. Previous segmentation-based methods, which conduct pixel-level classification and separate adjacent texts by predicting center lines with fixed widths, are able to locate the boundaries of arbitrary-shaped texts. However, the detected text regions may stick together or break into multiple areas with sub-optimal results while the width of the center lines is not appropriate. In this paper, a novel natural scene text detector based on distance map is proposed. The method can detect arbitrary-shaped texts more flexibly and robustly by adjusting the width of the center line. Experimental results on several datasets demonstrate that the proposed method is more competitive than the methods based on fixed-width center lines and obtains state-of-the-art or comparable performance on CTW1500, ICDAR2015 and Total-Text. Notably, the proposed method achieves F-measures of 85.4% on the ICDAR 2015 dataset and 81.6% on the Total-Text dataset. Code is available at:
https://github.com/Whu-wxy/DistNet
.</description><identifier>ISSN: 0924-669X</identifier><identifier>EISSN: 1573-7497</identifier><identifier>DOI: 10.1007/s10489-021-03065-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Annotations ; Artificial Intelligence ; Boundaries ; Boxes ; Computer Science ; Datasets ; Horizontal orientation ; Machines ; Manufacturing ; Mechanical Engineering ; Methods ; Processes ; Quadrilaterals ; Sensors ; Texts</subject><ispartof>Applied intelligence (Dordrecht, Netherlands), 2022-09, Vol.52 (12), p.14374-14386</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-1c7d5d63f265547e3916db79e4096a221511f1c8737dbe040b02754a0db843863</citedby><cites>FETCH-LOGICAL-c319t-1c7d5d63f265547e3916db79e4096a221511f1c8737dbe040b02754a0db843863</cites><orcidid>0000-0003-2456-6845</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10489-021-03065-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10489-021-03065-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Wang, Xinyu</creatorcontrib><creatorcontrib>Yi, Yaohua</creatorcontrib><creatorcontrib>Peng, Jibing</creatorcontrib><creatorcontrib>Wang, Kaili</creatorcontrib><title>Arbitrary-shaped scene text detection by predicting distance map</title><title>Applied intelligence (Dordrecht, Netherlands)</title><addtitle>Appl Intell</addtitle><description>Natural scene text detection is a challenging task, and the existing quadrilateral bounding box regression-based methods enable the location of horizontal and multi-oriented texts but have great difficulties in locating arbitrary-shaped texts due to the limited shape of the quadrilateral bounding box template. Previous segmentation-based methods, which conduct pixel-level classification and separate adjacent texts by predicting center lines with fixed widths, are able to locate the boundaries of arbitrary-shaped texts. However, the detected text regions may stick together or break into multiple areas with sub-optimal results while the width of the center lines is not appropriate. In this paper, a novel natural scene text detector based on distance map is proposed. The method can detect arbitrary-shaped texts more flexibly and robustly by adjusting the width of the center line. Experimental results on several datasets demonstrate that the proposed method is more competitive than the methods based on fixed-width center lines and obtains state-of-the-art or comparable performance on CTW1500, ICDAR2015 and Total-Text. Notably, the proposed method achieves F-measures of 85.4% on the ICDAR 2015 dataset and 81.6% on the Total-Text dataset. Code is available at:
https://github.com/Whu-wxy/DistNet
.</description><subject>Annotations</subject><subject>Artificial Intelligence</subject><subject>Boundaries</subject><subject>Boxes</subject><subject>Computer Science</subject><subject>Datasets</subject><subject>Horizontal orientation</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Mechanical Engineering</subject><subject>Methods</subject><subject>Processes</subject><subject>Quadrilaterals</subject><subject>Sensors</subject><subject>Texts</subject><issn>0924-669X</issn><issn>1573-7497</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE1LxDAQhoMouK7-AU8Fz9GZfDY3l8UvWPCi4C20Tbp2cduaZMH11xut4M3TMPA-7zAPIecIlwigryKCKA0FhhQ4KEk_D8gMpeZUC6MPyQwME1Qp83JMTmLcAADngDNyvQh1l0IV9jS-VqN3RWx874vkP1LhfPJN6oa-qPfFGLzr8tavC9fFVPWNL7bVeEqO2uot-rPfOSfPtzdPy3u6erx7WC5WtOFoEsVGO-kUb5mSUmjPDSpXa-MFGFUxhhKxxabUXLvag4AamJaiAleXgpeKz8nF1DuG4X3nY7KbYRf6fNIyjcZwLrjMKTalmjDEGHxrx9Bt83cWwX6bspMpm03ZH1P2M0N8gmIO92sf_qr_ob4A8kFrCA</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Wang, Xinyu</creator><creator>Yi, Yaohua</creator><creator>Peng, Jibing</creator><creator>Wang, Kaili</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-2456-6845</orcidid></search><sort><creationdate>20220901</creationdate><title>Arbitrary-shaped scene text detection by predicting distance map</title><author>Wang, Xinyu ; Yi, Yaohua ; Peng, Jibing ; Wang, Kaili</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-1c7d5d63f265547e3916db79e4096a221511f1c8737dbe040b02754a0db843863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Annotations</topic><topic>Artificial Intelligence</topic><topic>Boundaries</topic><topic>Boxes</topic><topic>Computer Science</topic><topic>Datasets</topic><topic>Horizontal orientation</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Mechanical Engineering</topic><topic>Methods</topic><topic>Processes</topic><topic>Quadrilaterals</topic><topic>Sensors</topic><topic>Texts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Xinyu</creatorcontrib><creatorcontrib>Yi, Yaohua</creatorcontrib><creatorcontrib>Peng, Jibing</creatorcontrib><creatorcontrib>Wang, Kaili</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Complete</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Applied intelligence (Dordrecht, Netherlands)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Xinyu</au><au>Yi, Yaohua</au><au>Peng, Jibing</au><au>Wang, Kaili</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Arbitrary-shaped scene text detection by predicting distance map</atitle><jtitle>Applied intelligence (Dordrecht, Netherlands)</jtitle><stitle>Appl Intell</stitle><date>2022-09-01</date><risdate>2022</risdate><volume>52</volume><issue>12</issue><spage>14374</spage><epage>14386</epage><pages>14374-14386</pages><issn>0924-669X</issn><eissn>1573-7497</eissn><abstract>Natural scene text detection is a challenging task, and the existing quadrilateral bounding box regression-based methods enable the location of horizontal and multi-oriented texts but have great difficulties in locating arbitrary-shaped texts due to the limited shape of the quadrilateral bounding box template. Previous segmentation-based methods, which conduct pixel-level classification and separate adjacent texts by predicting center lines with fixed widths, are able to locate the boundaries of arbitrary-shaped texts. However, the detected text regions may stick together or break into multiple areas with sub-optimal results while the width of the center lines is not appropriate. In this paper, a novel natural scene text detector based on distance map is proposed. The method can detect arbitrary-shaped texts more flexibly and robustly by adjusting the width of the center line. Experimental results on several datasets demonstrate that the proposed method is more competitive than the methods based on fixed-width center lines and obtains state-of-the-art or comparable performance on CTW1500, ICDAR2015 and Total-Text. Notably, the proposed method achieves F-measures of 85.4% on the ICDAR 2015 dataset and 81.6% on the Total-Text dataset. Code is available at:
https://github.com/Whu-wxy/DistNet
.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10489-021-03065-z</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-2456-6845</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0924-669X |
ispartof | Applied intelligence (Dordrecht, Netherlands), 2022-09, Vol.52 (12), p.14374-14386 |
issn | 0924-669X 1573-7497 |
language | eng |
recordid | cdi_proquest_journals_2719933435 |
source | Springer Nature - Complete Springer Journals |
subjects | Annotations Artificial Intelligence Boundaries Boxes Computer Science Datasets Horizontal orientation Machines Manufacturing Mechanical Engineering Methods Processes Quadrilaterals Sensors Texts |
title | Arbitrary-shaped scene text detection by predicting distance map |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T01%3A32%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Arbitrary-shaped%20scene%20text%20detection%20by%20predicting%20distance%20map&rft.jtitle=Applied%20intelligence%20(Dordrecht,%20Netherlands)&rft.au=Wang,%20Xinyu&rft.date=2022-09-01&rft.volume=52&rft.issue=12&rft.spage=14374&rft.epage=14386&rft.pages=14374-14386&rft.issn=0924-669X&rft.eissn=1573-7497&rft_id=info:doi/10.1007/s10489-021-03065-z&rft_dat=%3Cproquest_cross%3E2719933435%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2719933435&rft_id=info:pmid/&rfr_iscdi=true |