Weak heirs, coheirs and the Ellis semigroups
Assume \(G\prec H\) are groups and \({\cal A}\subseteq{\cal P}(G),\ {\cal B}\subseteq{\cal P}(H)\) are algebras of sets closed under left group translation. Under some additional assumptions we find algebraic connections between the Ellis [semi]groups of the \(G\)-flow \(S({\cal A})\) and the \(H\)-...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-08 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Malinowski, Adam Newelski, Ludomir |
description | Assume \(G\prec H\) are groups and \({\cal A}\subseteq{\cal P}(G),\ {\cal B}\subseteq{\cal P}(H)\) are algebras of sets closed under left group translation. Under some additional assumptions we find algebraic connections between the Ellis [semi]groups of the \(G\)-flow \(S({\cal A})\) and the \(H\)-flow \(S({\cal B})\). We apply these results in the model theoretic context. Namely, assume \(G\) is a group definable in a model \(M\) and \(M\prec^* N\). Using weak heirs and weak coheirs we point out some algebraic connections between the Ellis semigroups \(S_{ext,G}(M)\) and \(S_{ext,G}(N)\). Assuming every minimal left ideal in \(S_{ext,G}(N)\) is a group we prove that the Ellis groups of \(S_{ext,G}(M)\) are isomorphic to closed subgroups of the Ellis groups of \(S_{ext,G}(N)\). |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2719597414</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2719597414</sourcerecordid><originalsourceid>FETCH-proquest_journals_27195974143</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQCU9NzFbISM0sKtZRSM4HMxQS81IUSjJSFVxzcjKLFYpTczPTi_JLC4p5GFjTEnOKU3mhNDeDsptriLOHbkFRfmFpanFJfFZ-aVEeUCreyNzQ0tTS3MTQxJg4VQBSIjFK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2719597414</pqid></control><display><type>article</type><title>Weak heirs, coheirs and the Ellis semigroups</title><source>Free E- Journals</source><creator>Malinowski, Adam ; Newelski, Ludomir</creator><creatorcontrib>Malinowski, Adam ; Newelski, Ludomir</creatorcontrib><description>Assume \(G\prec H\) are groups and \({\cal A}\subseteq{\cal P}(G),\ {\cal B}\subseteq{\cal P}(H)\) are algebras of sets closed under left group translation. Under some additional assumptions we find algebraic connections between the Ellis [semi]groups of the \(G\)-flow \(S({\cal A})\) and the \(H\)-flow \(S({\cal B})\). We apply these results in the model theoretic context. Namely, assume \(G\) is a group definable in a model \(M\) and \(M\prec^* N\). Using weak heirs and weak coheirs we point out some algebraic connections between the Ellis semigroups \(S_{ext,G}(M)\) and \(S_{ext,G}(N)\). Assuming every minimal left ideal in \(S_{ext,G}(N)\) is a group we prove that the Ellis groups of \(S_{ext,G}(M)\) are isomorphic to closed subgroups of the Ellis groups of \(S_{ext,G}(N)\).</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algebra ; Semigroups ; Subgroups</subject><ispartof>arXiv.org, 2023-08</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Malinowski, Adam</creatorcontrib><creatorcontrib>Newelski, Ludomir</creatorcontrib><title>Weak heirs, coheirs and the Ellis semigroups</title><title>arXiv.org</title><description>Assume \(G\prec H\) are groups and \({\cal A}\subseteq{\cal P}(G),\ {\cal B}\subseteq{\cal P}(H)\) are algebras of sets closed under left group translation. Under some additional assumptions we find algebraic connections between the Ellis [semi]groups of the \(G\)-flow \(S({\cal A})\) and the \(H\)-flow \(S({\cal B})\). We apply these results in the model theoretic context. Namely, assume \(G\) is a group definable in a model \(M\) and \(M\prec^* N\). Using weak heirs and weak coheirs we point out some algebraic connections between the Ellis semigroups \(S_{ext,G}(M)\) and \(S_{ext,G}(N)\). Assuming every minimal left ideal in \(S_{ext,G}(N)\) is a group we prove that the Ellis groups of \(S_{ext,G}(M)\) are isomorphic to closed subgroups of the Ellis groups of \(S_{ext,G}(N)\).</description><subject>Algebra</subject><subject>Semigroups</subject><subject>Subgroups</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQCU9NzFbISM0sKtZRSM4HMxQS81IUSjJSFVxzcjKLFYpTczPTi_JLC4p5GFjTEnOKU3mhNDeDsptriLOHbkFRfmFpanFJfFZ-aVEeUCreyNzQ0tTS3MTQxJg4VQBSIjFK</recordid><startdate>20230823</startdate><enddate>20230823</enddate><creator>Malinowski, Adam</creator><creator>Newelski, Ludomir</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20230823</creationdate><title>Weak heirs, coheirs and the Ellis semigroups</title><author>Malinowski, Adam ; Newelski, Ludomir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27195974143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algebra</topic><topic>Semigroups</topic><topic>Subgroups</topic><toplevel>online_resources</toplevel><creatorcontrib>Malinowski, Adam</creatorcontrib><creatorcontrib>Newelski, Ludomir</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Malinowski, Adam</au><au>Newelski, Ludomir</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Weak heirs, coheirs and the Ellis semigroups</atitle><jtitle>arXiv.org</jtitle><date>2023-08-23</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Assume \(G\prec H\) are groups and \({\cal A}\subseteq{\cal P}(G),\ {\cal B}\subseteq{\cal P}(H)\) are algebras of sets closed under left group translation. Under some additional assumptions we find algebraic connections between the Ellis [semi]groups of the \(G\)-flow \(S({\cal A})\) and the \(H\)-flow \(S({\cal B})\). We apply these results in the model theoretic context. Namely, assume \(G\) is a group definable in a model \(M\) and \(M\prec^* N\). Using weak heirs and weak coheirs we point out some algebraic connections between the Ellis semigroups \(S_{ext,G}(M)\) and \(S_{ext,G}(N)\). Assuming every minimal left ideal in \(S_{ext,G}(N)\) is a group we prove that the Ellis groups of \(S_{ext,G}(M)\) are isomorphic to closed subgroups of the Ellis groups of \(S_{ext,G}(N)\).</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-08 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2719597414 |
source | Free E- Journals |
subjects | Algebra Semigroups Subgroups |
title | Weak heirs, coheirs and the Ellis semigroups |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T10%3A21%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Weak%20heirs,%20coheirs%20and%20the%20Ellis%20semigroups&rft.jtitle=arXiv.org&rft.au=Malinowski,%20Adam&rft.date=2023-08-23&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2719597414%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2719597414&rft_id=info:pmid/&rfr_iscdi=true |