UNesT: Local Spatial Representation Learning with Hierarchical Transformer for Efficient Medical Segmentation

Transformer-based models, capable of learning better global dependencies, have recently demonstrated exceptional representation learning capabilities in computer vision and medical image analysis. Transformer reformats the image into separate patches and realizes global communication via the self-at...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-09
Hauptverfasser: Yu, Xin, Yang, Qi, Zhou, Yinchi, Cai, Leon Y, Gao, Riqiang, Lee, Ho Hin, Li, Thomas, Bao, Shunxing, Xu, Zhoubing, Lasko, Thomas A, Abramson, Richard G, Zhang, Zizhao, Huo, Yuankai, Landman, Bennett A, Tang, Yucheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!