On 2+1-dimensional fibre-reinforced fluid motions: a magnetohydrodynamics nexus

An intrinsic geometric decomposition is applied to provide via a canonical third-order nonlinear equation a connection between 2+1-dimensional fibre-reinforced motions of a fluid and a magnetohydrodynamic system. A Lagrange-type parametrisation is introduced, whereby both geometric and algebraic pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta mechanica 2022-10, Vol.233 (10), p.4047-4062
Hauptverfasser: Demskoi, Dmitry K., Rogers, Colin, Schief, Wolfgang K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4062
container_issue 10
container_start_page 4047
container_title Acta mechanica
container_volume 233
creator Demskoi, Dmitry K.
Rogers, Colin
Schief, Wolfgang K.
description An intrinsic geometric decomposition is applied to provide via a canonical third-order nonlinear equation a connection between 2+1-dimensional fibre-reinforced motions of a fluid and a magnetohydrodynamic system. A Lagrange-type parametrisation is introduced, whereby both geometric and algebraic properties of certain non-steady magnetohydrodynamic motions may be established.
doi_str_mv 10.1007/s00707-022-03303-6
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2719591077</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A720452718</galeid><sourcerecordid>A720452718</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-7dec52faa954764d46950a8b4a28317a59cc0dbc73a6016c44c6c5217ac0afa03</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKt_wNWAS0m9eUzSuCvFFxS60XVIk0yd0klqMgP23xsdwZ0Ebsi957ucHISuCcwIgLzLpYDEQCkGxoBhcYImRBCFhWLyFE0AgOBaSThHFznvyotKTiZovQ4VvSXYtZ0PuY3B7Kum3SSPk29DE5P1rmr2Q-uqLvZlnu8rU3VmG3wf348uRXcMpmttroL_HPIlOmvMPvur33uK3h4fXpfPeLV-elkuVtiymvVYOm9r2hijai4Fd1yoGsx8ww2dMyJNrawFt7GSGQFEWM6tKECZWDCNATZFN-PeQ4ofg8-93sUhFfdZU0lUrQhIWVSzUbU1e6-__9MnY8txvliOwTdt6S8kBV4XbF4AOgI2xZyTb_QhtZ1JR01Afyetx6R1SVr_JK1FgdgI5SIOW5_-vPxDfQEBB4BH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2719591077</pqid></control><display><type>article</type><title>On 2+1-dimensional fibre-reinforced fluid motions: a magnetohydrodynamics nexus</title><source>SpringerLink Journals</source><creator>Demskoi, Dmitry K. ; Rogers, Colin ; Schief, Wolfgang K.</creator><creatorcontrib>Demskoi, Dmitry K. ; Rogers, Colin ; Schief, Wolfgang K.</creatorcontrib><description>An intrinsic geometric decomposition is applied to provide via a canonical third-order nonlinear equation a connection between 2+1-dimensional fibre-reinforced motions of a fluid and a magnetohydrodynamic system. A Lagrange-type parametrisation is introduced, whereby both geometric and algebraic properties of certain non-steady magnetohydrodynamic motions may be established.</description><identifier>ISSN: 0001-5970</identifier><identifier>EISSN: 1619-6937</identifier><identifier>DOI: 10.1007/s00707-022-03303-6</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Analysis ; Approximation ; Classical and Continuum Physics ; Control ; Dynamical Systems ; Engineering ; Engineering Fluid Dynamics ; Engineering Thermodynamics ; Fiber reinforced materials ; Fluid dynamics ; Fluid flow ; Fluid mechanics ; Heat and Mass Transfer ; Kinematics ; Magnetic properties ; Magnetohydrodynamics ; Nonlinear equations ; Original Paper ; Parameterization ; Partial differential equations ; Solid Mechanics ; Theoretical and Applied Mechanics ; Vibration</subject><ispartof>Acta mechanica, 2022-10, Vol.233 (10), p.4047-4062</ispartof><rights>The Author(s) 2022</rights><rights>COPYRIGHT 2022 Springer</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c353t-7dec52faa954764d46950a8b4a28317a59cc0dbc73a6016c44c6c5217ac0afa03</cites><orcidid>0000-0001-7993-9632</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00707-022-03303-6$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00707-022-03303-6$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Demskoi, Dmitry K.</creatorcontrib><creatorcontrib>Rogers, Colin</creatorcontrib><creatorcontrib>Schief, Wolfgang K.</creatorcontrib><title>On 2+1-dimensional fibre-reinforced fluid motions: a magnetohydrodynamics nexus</title><title>Acta mechanica</title><addtitle>Acta Mech</addtitle><description>An intrinsic geometric decomposition is applied to provide via a canonical third-order nonlinear equation a connection between 2+1-dimensional fibre-reinforced motions of a fluid and a magnetohydrodynamic system. A Lagrange-type parametrisation is introduced, whereby both geometric and algebraic properties of certain non-steady magnetohydrodynamic motions may be established.</description><subject>Analysis</subject><subject>Approximation</subject><subject>Classical and Continuum Physics</subject><subject>Control</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Engineering Thermodynamics</subject><subject>Fiber reinforced materials</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fluid mechanics</subject><subject>Heat and Mass Transfer</subject><subject>Kinematics</subject><subject>Magnetic properties</subject><subject>Magnetohydrodynamics</subject><subject>Nonlinear equations</subject><subject>Original Paper</subject><subject>Parameterization</subject><subject>Partial differential equations</subject><subject>Solid Mechanics</subject><subject>Theoretical and Applied Mechanics</subject><subject>Vibration</subject><issn>0001-5970</issn><issn>1619-6937</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kEtLAzEUhYMoWKt_wNWAS0m9eUzSuCvFFxS60XVIk0yd0klqMgP23xsdwZ0Ebsi957ucHISuCcwIgLzLpYDEQCkGxoBhcYImRBCFhWLyFE0AgOBaSThHFznvyotKTiZovQ4VvSXYtZ0PuY3B7Kum3SSPk29DE5P1rmr2Q-uqLvZlnu8rU3VmG3wf348uRXcMpmttroL_HPIlOmvMPvur33uK3h4fXpfPeLV-elkuVtiymvVYOm9r2hijai4Fd1yoGsx8ww2dMyJNrawFt7GSGQFEWM6tKECZWDCNATZFN-PeQ4ofg8-93sUhFfdZU0lUrQhIWVSzUbU1e6-__9MnY8txvliOwTdt6S8kBV4XbF4AOgI2xZyTb_QhtZ1JR01Afyetx6R1SVr_JK1FgdgI5SIOW5_-vPxDfQEBB4BH</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Demskoi, Dmitry K.</creator><creator>Rogers, Colin</creator><creator>Schief, Wolfgang K.</creator><general>Springer Vienna</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7XB</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0001-7993-9632</orcidid></search><sort><creationdate>20221001</creationdate><title>On 2+1-dimensional fibre-reinforced fluid motions: a magnetohydrodynamics nexus</title><author>Demskoi, Dmitry K. ; Rogers, Colin ; Schief, Wolfgang K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-7dec52faa954764d46950a8b4a28317a59cc0dbc73a6016c44c6c5217ac0afa03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Analysis</topic><topic>Approximation</topic><topic>Classical and Continuum Physics</topic><topic>Control</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Engineering Thermodynamics</topic><topic>Fiber reinforced materials</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fluid mechanics</topic><topic>Heat and Mass Transfer</topic><topic>Kinematics</topic><topic>Magnetic properties</topic><topic>Magnetohydrodynamics</topic><topic>Nonlinear equations</topic><topic>Original Paper</topic><topic>Parameterization</topic><topic>Partial differential equations</topic><topic>Solid Mechanics</topic><topic>Theoretical and Applied Mechanics</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Demskoi, Dmitry K.</creatorcontrib><creatorcontrib>Rogers, Colin</creatorcontrib><creatorcontrib>Schief, Wolfgang K.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Acta mechanica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Demskoi, Dmitry K.</au><au>Rogers, Colin</au><au>Schief, Wolfgang K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On 2+1-dimensional fibre-reinforced fluid motions: a magnetohydrodynamics nexus</atitle><jtitle>Acta mechanica</jtitle><stitle>Acta Mech</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>233</volume><issue>10</issue><spage>4047</spage><epage>4062</epage><pages>4047-4062</pages><issn>0001-5970</issn><eissn>1619-6937</eissn><abstract>An intrinsic geometric decomposition is applied to provide via a canonical third-order nonlinear equation a connection between 2+1-dimensional fibre-reinforced motions of a fluid and a magnetohydrodynamic system. A Lagrange-type parametrisation is introduced, whereby both geometric and algebraic properties of certain non-steady magnetohydrodynamic motions may be established.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s00707-022-03303-6</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-7993-9632</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0001-5970
ispartof Acta mechanica, 2022-10, Vol.233 (10), p.4047-4062
issn 0001-5970
1619-6937
language eng
recordid cdi_proquest_journals_2719591077
source SpringerLink Journals
subjects Analysis
Approximation
Classical and Continuum Physics
Control
Dynamical Systems
Engineering
Engineering Fluid Dynamics
Engineering Thermodynamics
Fiber reinforced materials
Fluid dynamics
Fluid flow
Fluid mechanics
Heat and Mass Transfer
Kinematics
Magnetic properties
Magnetohydrodynamics
Nonlinear equations
Original Paper
Parameterization
Partial differential equations
Solid Mechanics
Theoretical and Applied Mechanics
Vibration
title On 2+1-dimensional fibre-reinforced fluid motions: a magnetohydrodynamics nexus
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T00%3A54%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%202+1-dimensional%20fibre-reinforced%20fluid%20motions:%20a%20magnetohydrodynamics%20nexus&rft.jtitle=Acta%20mechanica&rft.au=Demskoi,%20Dmitry%20K.&rft.date=2022-10-01&rft.volume=233&rft.issue=10&rft.spage=4047&rft.epage=4062&rft.pages=4047-4062&rft.issn=0001-5970&rft.eissn=1619-6937&rft_id=info:doi/10.1007/s00707-022-03303-6&rft_dat=%3Cgale_proqu%3EA720452718%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2719591077&rft_id=info:pmid/&rft_galeid=A720452718&rfr_iscdi=true