AI based face recognition system using FaceNet deep learning architecture

In recent years face recognition system is emerging technology in research areas. Face recognition is used in many applications such as attendance management system, People tracking system and access control system etc. Major challenges faced in face recognition are detection and recognition because...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Raju, Anand, Saravanan, Thirukkumaran, Arul, Jawahar Vaitheeswar
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2640
creator Raju, Anand
Saravanan, Thirukkumaran
Arul, Jawahar Vaitheeswar
description In recent years face recognition system is emerging technology in research areas. Face recognition is used in many applications such as attendance management system, People tracking system and access control system etc. Major challenges faced in face recognition are detection and recognition because it is not easy to detect multiple faces in one frame and difficult to recognize the faces with poor resolution. Therefore, the main objective of this paper is to obtain better accuracy by using the combination of FaceNet and Deep Neural Network (DNN). In this proposed system, FaceNet is used for feature extraction by embedding 128 dimensions per face and DNN is used to classify the given training data with extracted feature of FaceNet. The outcome of the system is practical, reliable and consumes less time.
doi_str_mv 10.1063/5.0118073
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2719567364</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2719567364</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2033-6da2992dc94b9539a2b1273229c2022e2ed7c4635d6418ab341903af89e308683</originalsourceid><addsrcrecordid>eNp9kE9LAzEUxIMoWKsHv0HAm7A1_7M5lmJroehFwVvIJm_rlnZ3TbJCv70tLXjzNDDzYx5vELqnZEKJ4k9yQigtieYXaESlpIVWVF2iESFGFEzwz2t0k9KGEGa0LkdoOV3iyiUIuHYecATfrdsmN12L0z5l2OEhNe0azw_pK2QcAHq8BRfbo-ui_2oy-DxEuEVXtdsmuDvrGH3Mn99nL8XqbbGcTVdFzwjnhQqOGcOCN6IykhvHKso0Z8x4RhgDBkF7obgMStDSVVxQQ7irSwOclKrkY_Rw6u1j9z1AynbTDbE9nLRMUyOV5kocqMcTlXyT3fEf28dm5-LeUmKPU1lpz1P9B_908Q-0faj5L3CUZ9k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2719567364</pqid></control><display><type>conference_proceeding</type><title>AI based face recognition system using FaceNet deep learning architecture</title><source>AIP Journals Complete</source><creator>Raju, Anand ; Saravanan, Thirukkumaran ; Arul, Jawahar Vaitheeswar</creator><contributor>Chakrabarti, Satyajit ; Bar, Arun Kr ; Kar, Subhajit</contributor><creatorcontrib>Raju, Anand ; Saravanan, Thirukkumaran ; Arul, Jawahar Vaitheeswar ; Chakrabarti, Satyajit ; Bar, Arun Kr ; Kar, Subhajit</creatorcontrib><description>In recent years face recognition system is emerging technology in research areas. Face recognition is used in many applications such as attendance management system, People tracking system and access control system etc. Major challenges faced in face recognition are detection and recognition because it is not easy to detect multiple faces in one frame and difficult to recognize the faces with poor resolution. Therefore, the main objective of this paper is to obtain better accuracy by using the combination of FaceNet and Deep Neural Network (DNN). In this proposed system, FaceNet is used for feature extraction by embedding 128 dimensions per face and DNN is used to classify the given training data with extracted feature of FaceNet. The outcome of the system is practical, reliable and consumes less time.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0118073</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Access control ; Artificial neural networks ; Face recognition ; Feature extraction ; Machine learning ; New technology ; Tracking control ; Tracking systems</subject><ispartof>AIP Conference Proceedings, 2022, Vol.2640 (1)</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0118073$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,794,4512,23930,23931,25140,27924,27925,76384</link.rule.ids></links><search><contributor>Chakrabarti, Satyajit</contributor><contributor>Bar, Arun Kr</contributor><contributor>Kar, Subhajit</contributor><creatorcontrib>Raju, Anand</creatorcontrib><creatorcontrib>Saravanan, Thirukkumaran</creatorcontrib><creatorcontrib>Arul, Jawahar Vaitheeswar</creatorcontrib><title>AI based face recognition system using FaceNet deep learning architecture</title><title>AIP Conference Proceedings</title><description>In recent years face recognition system is emerging technology in research areas. Face recognition is used in many applications such as attendance management system, People tracking system and access control system etc. Major challenges faced in face recognition are detection and recognition because it is not easy to detect multiple faces in one frame and difficult to recognize the faces with poor resolution. Therefore, the main objective of this paper is to obtain better accuracy by using the combination of FaceNet and Deep Neural Network (DNN). In this proposed system, FaceNet is used for feature extraction by embedding 128 dimensions per face and DNN is used to classify the given training data with extracted feature of FaceNet. The outcome of the system is practical, reliable and consumes less time.</description><subject>Access control</subject><subject>Artificial neural networks</subject><subject>Face recognition</subject><subject>Feature extraction</subject><subject>Machine learning</subject><subject>New technology</subject><subject>Tracking control</subject><subject>Tracking systems</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2022</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kE9LAzEUxIMoWKsHv0HAm7A1_7M5lmJroehFwVvIJm_rlnZ3TbJCv70tLXjzNDDzYx5vELqnZEKJ4k9yQigtieYXaESlpIVWVF2iESFGFEzwz2t0k9KGEGa0LkdoOV3iyiUIuHYecATfrdsmN12L0z5l2OEhNe0azw_pK2QcAHq8BRfbo-ui_2oy-DxEuEVXtdsmuDvrGH3Mn99nL8XqbbGcTVdFzwjnhQqOGcOCN6IykhvHKso0Z8x4RhgDBkF7obgMStDSVVxQQ7irSwOclKrkY_Rw6u1j9z1AynbTDbE9nLRMUyOV5kocqMcTlXyT3fEf28dm5-LeUmKPU1lpz1P9B_908Q-0faj5L3CUZ9k</recordid><startdate>20220930</startdate><enddate>20220930</enddate><creator>Raju, Anand</creator><creator>Saravanan, Thirukkumaran</creator><creator>Arul, Jawahar Vaitheeswar</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20220930</creationdate><title>AI based face recognition system using FaceNet deep learning architecture</title><author>Raju, Anand ; Saravanan, Thirukkumaran ; Arul, Jawahar Vaitheeswar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2033-6da2992dc94b9539a2b1273229c2022e2ed7c4635d6418ab341903af89e308683</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Access control</topic><topic>Artificial neural networks</topic><topic>Face recognition</topic><topic>Feature extraction</topic><topic>Machine learning</topic><topic>New technology</topic><topic>Tracking control</topic><topic>Tracking systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Raju, Anand</creatorcontrib><creatorcontrib>Saravanan, Thirukkumaran</creatorcontrib><creatorcontrib>Arul, Jawahar Vaitheeswar</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Raju, Anand</au><au>Saravanan, Thirukkumaran</au><au>Arul, Jawahar Vaitheeswar</au><au>Chakrabarti, Satyajit</au><au>Bar, Arun Kr</au><au>Kar, Subhajit</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>AI based face recognition system using FaceNet deep learning architecture</atitle><btitle>AIP Conference Proceedings</btitle><date>2022-09-30</date><risdate>2022</risdate><volume>2640</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>In recent years face recognition system is emerging technology in research areas. Face recognition is used in many applications such as attendance management system, People tracking system and access control system etc. Major challenges faced in face recognition are detection and recognition because it is not easy to detect multiple faces in one frame and difficult to recognize the faces with poor resolution. Therefore, the main objective of this paper is to obtain better accuracy by using the combination of FaceNet and Deep Neural Network (DNN). In this proposed system, FaceNet is used for feature extraction by embedding 128 dimensions per face and DNN is used to classify the given training data with extracted feature of FaceNet. The outcome of the system is practical, reliable and consumes less time.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0118073</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP Conference Proceedings, 2022, Vol.2640 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_2719567364
source AIP Journals Complete
subjects Access control
Artificial neural networks
Face recognition
Feature extraction
Machine learning
New technology
Tracking control
Tracking systems
title AI based face recognition system using FaceNet deep learning architecture
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T06%3A18%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=AI%20based%20face%20recognition%20system%20using%20FaceNet%20deep%20learning%20architecture&rft.btitle=AIP%20Conference%20Proceedings&rft.au=Raju,%20Anand&rft.date=2022-09-30&rft.volume=2640&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0118073&rft_dat=%3Cproquest_scita%3E2719567364%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2719567364&rft_id=info:pmid/&rfr_iscdi=true