AI based face recognition system using FaceNet deep learning architecture
In recent years face recognition system is emerging technology in research areas. Face recognition is used in many applications such as attendance management system, People tracking system and access control system etc. Major challenges faced in face recognition are detection and recognition because...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 2640 |
creator | Raju, Anand Saravanan, Thirukkumaran Arul, Jawahar Vaitheeswar |
description | In recent years face recognition system is emerging technology in research areas. Face recognition is used in many applications such as attendance management system, People tracking system and access control system etc. Major challenges faced in face recognition are detection and recognition because it is not easy to detect multiple faces in one frame and difficult to recognize the faces with poor resolution. Therefore, the main objective of this paper is to obtain better accuracy by using the combination of FaceNet and Deep Neural Network (DNN). In this proposed system, FaceNet is used for feature extraction by embedding 128 dimensions per face and DNN is used to classify the given training data with extracted feature of FaceNet. The outcome of the system is practical, reliable and consumes less time. |
doi_str_mv | 10.1063/5.0118073 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2719567364</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2719567364</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2033-6da2992dc94b9539a2b1273229c2022e2ed7c4635d6418ab341903af89e308683</originalsourceid><addsrcrecordid>eNp9kE9LAzEUxIMoWKsHv0HAm7A1_7M5lmJroehFwVvIJm_rlnZ3TbJCv70tLXjzNDDzYx5vELqnZEKJ4k9yQigtieYXaESlpIVWVF2iESFGFEzwz2t0k9KGEGa0LkdoOV3iyiUIuHYecATfrdsmN12L0z5l2OEhNe0azw_pK2QcAHq8BRfbo-ui_2oy-DxEuEVXtdsmuDvrGH3Mn99nL8XqbbGcTVdFzwjnhQqOGcOCN6IykhvHKso0Z8x4RhgDBkF7obgMStDSVVxQQ7irSwOclKrkY_Rw6u1j9z1AynbTDbE9nLRMUyOV5kocqMcTlXyT3fEf28dm5-LeUmKPU1lpz1P9B_908Q-0faj5L3CUZ9k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2719567364</pqid></control><display><type>conference_proceeding</type><title>AI based face recognition system using FaceNet deep learning architecture</title><source>AIP Journals Complete</source><creator>Raju, Anand ; Saravanan, Thirukkumaran ; Arul, Jawahar Vaitheeswar</creator><contributor>Chakrabarti, Satyajit ; Bar, Arun Kr ; Kar, Subhajit</contributor><creatorcontrib>Raju, Anand ; Saravanan, Thirukkumaran ; Arul, Jawahar Vaitheeswar ; Chakrabarti, Satyajit ; Bar, Arun Kr ; Kar, Subhajit</creatorcontrib><description>In recent years face recognition system is emerging technology in research areas. Face recognition is used in many applications such as attendance management system, People tracking system and access control system etc. Major challenges faced in face recognition are detection and recognition because it is not easy to detect multiple faces in one frame and difficult to recognize the faces with poor resolution. Therefore, the main objective of this paper is to obtain better accuracy by using the combination of FaceNet and Deep Neural Network (DNN). In this proposed system, FaceNet is used for feature extraction by embedding 128 dimensions per face and DNN is used to classify the given training data with extracted feature of FaceNet. The outcome of the system is practical, reliable and consumes less time.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0118073</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Access control ; Artificial neural networks ; Face recognition ; Feature extraction ; Machine learning ; New technology ; Tracking control ; Tracking systems</subject><ispartof>AIP Conference Proceedings, 2022, Vol.2640 (1)</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0118073$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,794,4512,23930,23931,25140,27924,27925,76384</link.rule.ids></links><search><contributor>Chakrabarti, Satyajit</contributor><contributor>Bar, Arun Kr</contributor><contributor>Kar, Subhajit</contributor><creatorcontrib>Raju, Anand</creatorcontrib><creatorcontrib>Saravanan, Thirukkumaran</creatorcontrib><creatorcontrib>Arul, Jawahar Vaitheeswar</creatorcontrib><title>AI based face recognition system using FaceNet deep learning architecture</title><title>AIP Conference Proceedings</title><description>In recent years face recognition system is emerging technology in research areas. Face recognition is used in many applications such as attendance management system, People tracking system and access control system etc. Major challenges faced in face recognition are detection and recognition because it is not easy to detect multiple faces in one frame and difficult to recognize the faces with poor resolution. Therefore, the main objective of this paper is to obtain better accuracy by using the combination of FaceNet and Deep Neural Network (DNN). In this proposed system, FaceNet is used for feature extraction by embedding 128 dimensions per face and DNN is used to classify the given training data with extracted feature of FaceNet. The outcome of the system is practical, reliable and consumes less time.</description><subject>Access control</subject><subject>Artificial neural networks</subject><subject>Face recognition</subject><subject>Feature extraction</subject><subject>Machine learning</subject><subject>New technology</subject><subject>Tracking control</subject><subject>Tracking systems</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2022</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kE9LAzEUxIMoWKsHv0HAm7A1_7M5lmJroehFwVvIJm_rlnZ3TbJCv70tLXjzNDDzYx5vELqnZEKJ4k9yQigtieYXaESlpIVWVF2iESFGFEzwz2t0k9KGEGa0LkdoOV3iyiUIuHYecATfrdsmN12L0z5l2OEhNe0azw_pK2QcAHq8BRfbo-ui_2oy-DxEuEVXtdsmuDvrGH3Mn99nL8XqbbGcTVdFzwjnhQqOGcOCN6IykhvHKso0Z8x4RhgDBkF7obgMStDSVVxQQ7irSwOclKrkY_Rw6u1j9z1AynbTDbE9nLRMUyOV5kocqMcTlXyT3fEf28dm5-LeUmKPU1lpz1P9B_908Q-0faj5L3CUZ9k</recordid><startdate>20220930</startdate><enddate>20220930</enddate><creator>Raju, Anand</creator><creator>Saravanan, Thirukkumaran</creator><creator>Arul, Jawahar Vaitheeswar</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20220930</creationdate><title>AI based face recognition system using FaceNet deep learning architecture</title><author>Raju, Anand ; Saravanan, Thirukkumaran ; Arul, Jawahar Vaitheeswar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2033-6da2992dc94b9539a2b1273229c2022e2ed7c4635d6418ab341903af89e308683</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Access control</topic><topic>Artificial neural networks</topic><topic>Face recognition</topic><topic>Feature extraction</topic><topic>Machine learning</topic><topic>New technology</topic><topic>Tracking control</topic><topic>Tracking systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Raju, Anand</creatorcontrib><creatorcontrib>Saravanan, Thirukkumaran</creatorcontrib><creatorcontrib>Arul, Jawahar Vaitheeswar</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Raju, Anand</au><au>Saravanan, Thirukkumaran</au><au>Arul, Jawahar Vaitheeswar</au><au>Chakrabarti, Satyajit</au><au>Bar, Arun Kr</au><au>Kar, Subhajit</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>AI based face recognition system using FaceNet deep learning architecture</atitle><btitle>AIP Conference Proceedings</btitle><date>2022-09-30</date><risdate>2022</risdate><volume>2640</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>In recent years face recognition system is emerging technology in research areas. Face recognition is used in many applications such as attendance management system, People tracking system and access control system etc. Major challenges faced in face recognition are detection and recognition because it is not easy to detect multiple faces in one frame and difficult to recognize the faces with poor resolution. Therefore, the main objective of this paper is to obtain better accuracy by using the combination of FaceNet and Deep Neural Network (DNN). In this proposed system, FaceNet is used for feature extraction by embedding 128 dimensions per face and DNN is used to classify the given training data with extracted feature of FaceNet. The outcome of the system is practical, reliable and consumes less time.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0118073</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP Conference Proceedings, 2022, Vol.2640 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_proquest_journals_2719567364 |
source | AIP Journals Complete |
subjects | Access control Artificial neural networks Face recognition Feature extraction Machine learning New technology Tracking control Tracking systems |
title | AI based face recognition system using FaceNet deep learning architecture |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T06%3A18%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=AI%20based%20face%20recognition%20system%20using%20FaceNet%20deep%20learning%20architecture&rft.btitle=AIP%20Conference%20Proceedings&rft.au=Raju,%20Anand&rft.date=2022-09-30&rft.volume=2640&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0118073&rft_dat=%3Cproquest_scita%3E2719567364%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2719567364&rft_id=info:pmid/&rfr_iscdi=true |