Forming Limit and Mechanical Properties of 2024-O Aluminum Alloy Under Electromagnetic Forming

The effect of electromagnetic forming (EMF) on the forming limit and properties of 2024-O aluminum alloy is studied in this paper. This was done to address the important problems related to the poor forming limit of aluminum alloy when conventional stamping is used. The evolution of the microstructu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metals and materials international 2022, Vol.28 (10), p.2472-2482
Hauptverfasser: Lin, Yuhong, Cui, Xiaohui, Chen, Kanghua, Xiao, Ang, Yan, Ziqin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2482
container_issue 10
container_start_page 2472
container_title Metals and materials international
container_volume 28
creator Lin, Yuhong
Cui, Xiaohui
Chen, Kanghua
Xiao, Ang
Yan, Ziqin
description The effect of electromagnetic forming (EMF) on the forming limit and properties of 2024-O aluminum alloy is studied in this paper. This was done to address the important problems related to the poor forming limit of aluminum alloy when conventional stamping is used. The evolution of the microstructure of the alloy during quasi-static stamping (QS) and the dynamic deformation is analyzed. This was done using mechanical testing, texture analysis, scanning electron microscopy (SEM), fracture analysis, and transmission electron microscopy (TEM). Compared with QS, the forming limit for EMF increases by 36.9%. For the same deformation height with 17.6mm, the maximum degree of thickness thinning of the sample for EMF is 4.7%, and 6.4% for QS. The thickness distribution of the EMF sample is more uniform than for the QS sample. Numerical simulation shows the maximum principal stresses at different points were almost same with each other after EMF, which leads to uniformity plastic deformation of samples. In addition, the grain size of the material decreases, the proportion of small-angle grains increases, and the copper texture increases after EMF. When EMF is used, the dislocation density of the sample is significantly higher than for QS and the dislocation distribution is more uniform. The temperature rise is small, which is not a significant reason for dislocation dispersed in EMF. Graphical Abstract
doi_str_mv 10.1007/s12540-021-01128-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2719458785</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2719458785</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-669c5b32f0f893a790aad107729581ced4641267972925c38fa3040c7e28dd2c3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFPAc3Tytbs5ltKqUKkHezXEbLZu2d3UZBfaf290C948zTC8zzvwIHRL4Z4C5A-RMimAAKMEKGUFOZyhCQOQRFChztGESlUQlTF-ia5i3AFklFM2Qe9LH9q62-JV3dY9Nl2JX5z9NF1tTYNfg9-70NcuYl9hBkyQNZ41QyKGNi2NP-JNV7qAF42zffCt2Xaury0-1V6ji8o00d2c5hRtlou3-RNZrR-f57MVsZyqnmSZsvKDswqqQnGTKzCmpJDnTMmCWleKTFCW5SodmLS8qAwHATZ3rChLZvkU3Y29--C_Bhd7vfND6NJLzXKqhCzyQqYUG1M2-BiDq_Q-1K0JR01B_3jUo0edPOpfj_qQID5CMYW7rQt_1f9Q36QldIY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2719458785</pqid></control><display><type>article</type><title>Forming Limit and Mechanical Properties of 2024-O Aluminum Alloy Under Electromagnetic Forming</title><source>SpringerLink Journals - AutoHoldings</source><creator>Lin, Yuhong ; Cui, Xiaohui ; Chen, Kanghua ; Xiao, Ang ; Yan, Ziqin</creator><creatorcontrib>Lin, Yuhong ; Cui, Xiaohui ; Chen, Kanghua ; Xiao, Ang ; Yan, Ziqin</creatorcontrib><description>The effect of electromagnetic forming (EMF) on the forming limit and properties of 2024-O aluminum alloy is studied in this paper. This was done to address the important problems related to the poor forming limit of aluminum alloy when conventional stamping is used. The evolution of the microstructure of the alloy during quasi-static stamping (QS) and the dynamic deformation is analyzed. This was done using mechanical testing, texture analysis, scanning electron microscopy (SEM), fracture analysis, and transmission electron microscopy (TEM). Compared with QS, the forming limit for EMF increases by 36.9%. For the same deformation height with 17.6mm, the maximum degree of thickness thinning of the sample for EMF is 4.7%, and 6.4% for QS. The thickness distribution of the EMF sample is more uniform than for the QS sample. Numerical simulation shows the maximum principal stresses at different points were almost same with each other after EMF, which leads to uniformity plastic deformation of samples. In addition, the grain size of the material decreases, the proportion of small-angle grains increases, and the copper texture increases after EMF. When EMF is used, the dislocation density of the sample is significantly higher than for QS and the dislocation distribution is more uniform. The temperature rise is small, which is not a significant reason for dislocation dispersed in EMF. Graphical Abstract</description><identifier>ISSN: 1598-9623</identifier><identifier>EISSN: 2005-4149</identifier><identifier>DOI: 10.1007/s12540-021-01128-x</identifier><language>eng</language><publisher>Seoul: The Korean Institute of Metals and Materials</publisher><subject>Aluminum alloys ; Aluminum base alloys ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Deformation ; Deformation analysis ; Dislocation density ; Electromagnetic forming ; Electron microscopy ; Engineering Thermodynamics ; Forming limits ; Fracture mechanics ; Grain size ; Heat and Mass Transfer ; Machines ; Magnetic Materials ; Magnetism ; Manufacturing ; Materials Science ; Mechanical properties ; Mechanical tests ; Metallic Materials ; Microscopy ; Plastic deformation ; Processes ; Solid Mechanics ; Stamping ; Texture ; Thickness</subject><ispartof>Metals and materials international, 2022, Vol.28 (10), p.2472-2482</ispartof><rights>The Korean Institute of Metals and Materials 2022</rights><rights>The Korean Institute of Metals and Materials 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-669c5b32f0f893a790aad107729581ced4641267972925c38fa3040c7e28dd2c3</citedby><cites>FETCH-LOGICAL-c319t-669c5b32f0f893a790aad107729581ced4641267972925c38fa3040c7e28dd2c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12540-021-01128-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12540-021-01128-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Lin, Yuhong</creatorcontrib><creatorcontrib>Cui, Xiaohui</creatorcontrib><creatorcontrib>Chen, Kanghua</creatorcontrib><creatorcontrib>Xiao, Ang</creatorcontrib><creatorcontrib>Yan, Ziqin</creatorcontrib><title>Forming Limit and Mechanical Properties of 2024-O Aluminum Alloy Under Electromagnetic Forming</title><title>Metals and materials international</title><addtitle>Met. Mater. Int</addtitle><description>The effect of electromagnetic forming (EMF) on the forming limit and properties of 2024-O aluminum alloy is studied in this paper. This was done to address the important problems related to the poor forming limit of aluminum alloy when conventional stamping is used. The evolution of the microstructure of the alloy during quasi-static stamping (QS) and the dynamic deformation is analyzed. This was done using mechanical testing, texture analysis, scanning electron microscopy (SEM), fracture analysis, and transmission electron microscopy (TEM). Compared with QS, the forming limit for EMF increases by 36.9%. For the same deformation height with 17.6mm, the maximum degree of thickness thinning of the sample for EMF is 4.7%, and 6.4% for QS. The thickness distribution of the EMF sample is more uniform than for the QS sample. Numerical simulation shows the maximum principal stresses at different points were almost same with each other after EMF, which leads to uniformity plastic deformation of samples. In addition, the grain size of the material decreases, the proportion of small-angle grains increases, and the copper texture increases after EMF. When EMF is used, the dislocation density of the sample is significantly higher than for QS and the dislocation distribution is more uniform. The temperature rise is small, which is not a significant reason for dislocation dispersed in EMF. Graphical Abstract</description><subject>Aluminum alloys</subject><subject>Aluminum base alloys</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Deformation</subject><subject>Deformation analysis</subject><subject>Dislocation density</subject><subject>Electromagnetic forming</subject><subject>Electron microscopy</subject><subject>Engineering Thermodynamics</subject><subject>Forming limits</subject><subject>Fracture mechanics</subject><subject>Grain size</subject><subject>Heat and Mass Transfer</subject><subject>Machines</subject><subject>Magnetic Materials</subject><subject>Magnetism</subject><subject>Manufacturing</subject><subject>Materials Science</subject><subject>Mechanical properties</subject><subject>Mechanical tests</subject><subject>Metallic Materials</subject><subject>Microscopy</subject><subject>Plastic deformation</subject><subject>Processes</subject><subject>Solid Mechanics</subject><subject>Stamping</subject><subject>Texture</subject><subject>Thickness</subject><issn>1598-9623</issn><issn>2005-4149</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wFPAc3Tytbs5ltKqUKkHezXEbLZu2d3UZBfaf290C948zTC8zzvwIHRL4Z4C5A-RMimAAKMEKGUFOZyhCQOQRFChztGESlUQlTF-ia5i3AFklFM2Qe9LH9q62-JV3dY9Nl2JX5z9NF1tTYNfg9-70NcuYl9hBkyQNZ41QyKGNi2NP-JNV7qAF42zffCt2Xaury0-1V6ji8o00d2c5hRtlou3-RNZrR-f57MVsZyqnmSZsvKDswqqQnGTKzCmpJDnTMmCWleKTFCW5SodmLS8qAwHATZ3rChLZvkU3Y29--C_Bhd7vfND6NJLzXKqhCzyQqYUG1M2-BiDq_Q-1K0JR01B_3jUo0edPOpfj_qQID5CMYW7rQt_1f9Q36QldIY</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Lin, Yuhong</creator><creator>Cui, Xiaohui</creator><creator>Chen, Kanghua</creator><creator>Xiao, Ang</creator><creator>Yan, Ziqin</creator><general>The Korean Institute of Metals and Materials</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>2022</creationdate><title>Forming Limit and Mechanical Properties of 2024-O Aluminum Alloy Under Electromagnetic Forming</title><author>Lin, Yuhong ; Cui, Xiaohui ; Chen, Kanghua ; Xiao, Ang ; Yan, Ziqin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-669c5b32f0f893a790aad107729581ced4641267972925c38fa3040c7e28dd2c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aluminum alloys</topic><topic>Aluminum base alloys</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Deformation</topic><topic>Deformation analysis</topic><topic>Dislocation density</topic><topic>Electromagnetic forming</topic><topic>Electron microscopy</topic><topic>Engineering Thermodynamics</topic><topic>Forming limits</topic><topic>Fracture mechanics</topic><topic>Grain size</topic><topic>Heat and Mass Transfer</topic><topic>Machines</topic><topic>Magnetic Materials</topic><topic>Magnetism</topic><topic>Manufacturing</topic><topic>Materials Science</topic><topic>Mechanical properties</topic><topic>Mechanical tests</topic><topic>Metallic Materials</topic><topic>Microscopy</topic><topic>Plastic deformation</topic><topic>Processes</topic><topic>Solid Mechanics</topic><topic>Stamping</topic><topic>Texture</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Yuhong</creatorcontrib><creatorcontrib>Cui, Xiaohui</creatorcontrib><creatorcontrib>Chen, Kanghua</creatorcontrib><creatorcontrib>Xiao, Ang</creatorcontrib><creatorcontrib>Yan, Ziqin</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Metals and materials international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Yuhong</au><au>Cui, Xiaohui</au><au>Chen, Kanghua</au><au>Xiao, Ang</au><au>Yan, Ziqin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Forming Limit and Mechanical Properties of 2024-O Aluminum Alloy Under Electromagnetic Forming</atitle><jtitle>Metals and materials international</jtitle><stitle>Met. Mater. Int</stitle><date>2022</date><risdate>2022</risdate><volume>28</volume><issue>10</issue><spage>2472</spage><epage>2482</epage><pages>2472-2482</pages><issn>1598-9623</issn><eissn>2005-4149</eissn><abstract>The effect of electromagnetic forming (EMF) on the forming limit and properties of 2024-O aluminum alloy is studied in this paper. This was done to address the important problems related to the poor forming limit of aluminum alloy when conventional stamping is used. The evolution of the microstructure of the alloy during quasi-static stamping (QS) and the dynamic deformation is analyzed. This was done using mechanical testing, texture analysis, scanning electron microscopy (SEM), fracture analysis, and transmission electron microscopy (TEM). Compared with QS, the forming limit for EMF increases by 36.9%. For the same deformation height with 17.6mm, the maximum degree of thickness thinning of the sample for EMF is 4.7%, and 6.4% for QS. The thickness distribution of the EMF sample is more uniform than for the QS sample. Numerical simulation shows the maximum principal stresses at different points were almost same with each other after EMF, which leads to uniformity plastic deformation of samples. In addition, the grain size of the material decreases, the proportion of small-angle grains increases, and the copper texture increases after EMF. When EMF is used, the dislocation density of the sample is significantly higher than for QS and the dislocation distribution is more uniform. The temperature rise is small, which is not a significant reason for dislocation dispersed in EMF. Graphical Abstract</abstract><cop>Seoul</cop><pub>The Korean Institute of Metals and Materials</pub><doi>10.1007/s12540-021-01128-x</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1598-9623
ispartof Metals and materials international, 2022, Vol.28 (10), p.2472-2482
issn 1598-9623
2005-4149
language eng
recordid cdi_proquest_journals_2719458785
source SpringerLink Journals - AutoHoldings
subjects Aluminum alloys
Aluminum base alloys
Characterization and Evaluation of Materials
Chemistry and Materials Science
Deformation
Deformation analysis
Dislocation density
Electromagnetic forming
Electron microscopy
Engineering Thermodynamics
Forming limits
Fracture mechanics
Grain size
Heat and Mass Transfer
Machines
Magnetic Materials
Magnetism
Manufacturing
Materials Science
Mechanical properties
Mechanical tests
Metallic Materials
Microscopy
Plastic deformation
Processes
Solid Mechanics
Stamping
Texture
Thickness
title Forming Limit and Mechanical Properties of 2024-O Aluminum Alloy Under Electromagnetic Forming
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T15%3A22%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Forming%20Limit%20and%20Mechanical%20Properties%20of%202024-O%20Aluminum%20Alloy%20Under%20Electromagnetic%20Forming&rft.jtitle=Metals%20and%20materials%20international&rft.au=Lin,%20Yuhong&rft.date=2022&rft.volume=28&rft.issue=10&rft.spage=2472&rft.epage=2482&rft.pages=2472-2482&rft.issn=1598-9623&rft.eissn=2005-4149&rft_id=info:doi/10.1007/s12540-021-01128-x&rft_dat=%3Cproquest_cross%3E2719458785%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2719458785&rft_id=info:pmid/&rfr_iscdi=true