Logarithmic girth expander graphs of SLn(Fp)
We provide an explicit construction of finite 4-regular graphs ( Γ k ) k ∈ N with girth Γ k → ∞ as k → ∞ and diam Γ k girth Γ k ⩽ D for some D > 0 and all k ∈ N . For each fixed dimension n ⩾ 2 , we find a pair of matrices in S L n ( Z ) such that (i) they generate a free subgroup, (ii) their red...
Gespeichert in:
Veröffentlicht in: | Journal of algebraic combinatorics 2022-11, Vol.56 (3), p.691-723 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 723 |
---|---|
container_issue | 3 |
container_start_page | 691 |
container_title | Journal of algebraic combinatorics |
container_volume | 56 |
creator | Arzhantseva, Goulnara Biswas, Arindam |
description | We provide an explicit construction of finite 4-regular graphs
(
Γ
k
)
k
∈
N
with
girth
Γ
k
→
∞
as
k
→
∞
and
diam
Γ
k
girth
Γ
k
⩽
D
for some
D
>
0
and all
k
∈
N
. For each fixed dimension
n
⩾
2
,
we find a pair of matrices in
S
L
n
(
Z
)
such that (i) they generate a free subgroup, (ii) their reductions
mod
p
generate
S
L
n
(
F
p
)
for all sufficiently large primes
p
, (iii) the corresponding Cayley graphs of
S
L
n
(
F
p
)
have girth at least
c
n
log
p
for some
c
n
>
0
. Relying on growth results (with no use of expansion properties of the involved graphs), we observe that the diameter of those Cayley graphs is at most
O
(
log
p
)
. This gives infinite sequences of finite 4-regular Cayley graphs of
S
L
n
(
F
p
)
as
p
→
∞
with large girth and bounded diameter-by-girth ratio. These are the first explicit examples in all dimensions
n
⩾
2
(all prior examples were in
n
=
2
). Moreover, they happen to be expanders. Together with Margulis’ and Lubotzky–Phillips–Sarnak’s classical constructions, these new graphs are the only known explicit logarithmic girth Cayley graph expanders. |
doi_str_mv | 10.1007/s10801-022-01128-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_2719458013</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2719458013</sourcerecordid><originalsourceid>FETCH-LOGICAL-p227t-69e8364f038f49bd8847b20713e9d85b1dc2e11808661f51f98dba3129131f133</originalsourceid><addsrcrecordid>eNpFkE1LxDAURYMoWEf_gKuCGwWj7yX9yFvKMKNCwYW6Du00aTtoG5MOyPx6O1ZwdTeHe7mHsUuEOwTI7wOCAuQgBAdEofj-iEWY5oITkjhmEZBIOSmiU3YWwhYASGEasdtiaErfje1nt4mbzo9tbL5d2dfGx40vXRviwcavRX-9djfn7MSWH8Fc_OWCva9Xb8snXrw8Pi8fCu6EyEeekVEySyxIZROqaqWSvBKQozRUq7TCeiMMogKVZWhTtKTqqpQoCCValHLBruZe54evnQmj3g4730-TWuRISTp9PVBypoLzXd8Y_08h6IMWPWvRkxb9q0Xv5Q8zaFLP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2719458013</pqid></control><display><type>article</type><title>Logarithmic girth expander graphs of SLn(Fp)</title><source>Springer Nature - Complete Springer Journals</source><creator>Arzhantseva, Goulnara ; Biswas, Arindam</creator><creatorcontrib>Arzhantseva, Goulnara ; Biswas, Arindam</creatorcontrib><description>We provide an explicit construction of finite 4-regular graphs
(
Γ
k
)
k
∈
N
with
girth
Γ
k
→
∞
as
k
→
∞
and
diam
Γ
k
girth
Γ
k
⩽
D
for some
D
>
0
and all
k
∈
N
. For each fixed dimension
n
⩾
2
,
we find a pair of matrices in
S
L
n
(
Z
)
such that (i) they generate a free subgroup, (ii) their reductions
mod
p
generate
S
L
n
(
F
p
)
for all sufficiently large primes
p
, (iii) the corresponding Cayley graphs of
S
L
n
(
F
p
)
have girth at least
c
n
log
p
for some
c
n
>
0
. Relying on growth results (with no use of expansion properties of the involved graphs), we observe that the diameter of those Cayley graphs is at most
O
(
log
p
)
. This gives infinite sequences of finite 4-regular Cayley graphs of
S
L
n
(
F
p
)
as
p
→
∞
with large girth and bounded diameter-by-girth ratio. These are the first explicit examples in all dimensions
n
⩾
2
(all prior examples were in
n
=
2
). Moreover, they happen to be expanders. Together with Margulis’ and Lubotzky–Phillips–Sarnak’s classical constructions, these new graphs are the only known explicit logarithmic girth Cayley graph expanders.</description><identifier>ISSN: 0925-9899</identifier><identifier>EISSN: 1572-9192</identifier><identifier>DOI: 10.1007/s10801-022-01128-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Combinatorics ; Computer Science ; Convex and Discrete Geometry ; Diameters ; Expanders ; Graphs ; Group Theory and Generalizations ; Lattices ; Logarithms ; Mathematics ; Mathematics and Statistics ; Order ; Ordered Algebraic Structures ; Subgroups</subject><ispartof>Journal of algebraic combinatorics, 2022-11, Vol.56 (3), p.691-723</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-6114-6589</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10801-022-01128-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10801-022-01128-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Arzhantseva, Goulnara</creatorcontrib><creatorcontrib>Biswas, Arindam</creatorcontrib><title>Logarithmic girth expander graphs of SLn(Fp)</title><title>Journal of algebraic combinatorics</title><addtitle>J Algebr Comb</addtitle><description>We provide an explicit construction of finite 4-regular graphs
(
Γ
k
)
k
∈
N
with
girth
Γ
k
→
∞
as
k
→
∞
and
diam
Γ
k
girth
Γ
k
⩽
D
for some
D
>
0
and all
k
∈
N
. For each fixed dimension
n
⩾
2
,
we find a pair of matrices in
S
L
n
(
Z
)
such that (i) they generate a free subgroup, (ii) their reductions
mod
p
generate
S
L
n
(
F
p
)
for all sufficiently large primes
p
, (iii) the corresponding Cayley graphs of
S
L
n
(
F
p
)
have girth at least
c
n
log
p
for some
c
n
>
0
. Relying on growth results (with no use of expansion properties of the involved graphs), we observe that the diameter of those Cayley graphs is at most
O
(
log
p
)
. This gives infinite sequences of finite 4-regular Cayley graphs of
S
L
n
(
F
p
)
as
p
→
∞
with large girth and bounded diameter-by-girth ratio. These are the first explicit examples in all dimensions
n
⩾
2
(all prior examples were in
n
=
2
). Moreover, they happen to be expanders. Together with Margulis’ and Lubotzky–Phillips–Sarnak’s classical constructions, these new graphs are the only known explicit logarithmic girth Cayley graph expanders.</description><subject>Combinatorics</subject><subject>Computer Science</subject><subject>Convex and Discrete Geometry</subject><subject>Diameters</subject><subject>Expanders</subject><subject>Graphs</subject><subject>Group Theory and Generalizations</subject><subject>Lattices</subject><subject>Logarithms</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Order</subject><subject>Ordered Algebraic Structures</subject><subject>Subgroups</subject><issn>0925-9899</issn><issn>1572-9192</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpFkE1LxDAURYMoWEf_gKuCGwWj7yX9yFvKMKNCwYW6Du00aTtoG5MOyPx6O1ZwdTeHe7mHsUuEOwTI7wOCAuQgBAdEofj-iEWY5oITkjhmEZBIOSmiU3YWwhYASGEasdtiaErfje1nt4mbzo9tbL5d2dfGx40vXRviwcavRX-9djfn7MSWH8Fc_OWCva9Xb8snXrw8Pi8fCu6EyEeekVEySyxIZROqaqWSvBKQozRUq7TCeiMMogKVZWhTtKTqqpQoCCValHLBruZe54evnQmj3g4730-TWuRISTp9PVBypoLzXd8Y_08h6IMWPWvRkxb9q0Xv5Q8zaFLP</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Arzhantseva, Goulnara</creator><creator>Biswas, Arindam</creator><general>Springer US</general><general>Springer Nature B.V</general><scope/><orcidid>https://orcid.org/0000-0001-6114-6589</orcidid></search><sort><creationdate>20221101</creationdate><title>Logarithmic girth expander graphs of SLn(Fp)</title><author>Arzhantseva, Goulnara ; Biswas, Arindam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p227t-69e8364f038f49bd8847b20713e9d85b1dc2e11808661f51f98dba3129131f133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Combinatorics</topic><topic>Computer Science</topic><topic>Convex and Discrete Geometry</topic><topic>Diameters</topic><topic>Expanders</topic><topic>Graphs</topic><topic>Group Theory and Generalizations</topic><topic>Lattices</topic><topic>Logarithms</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Order</topic><topic>Ordered Algebraic Structures</topic><topic>Subgroups</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arzhantseva, Goulnara</creatorcontrib><creatorcontrib>Biswas, Arindam</creatorcontrib><jtitle>Journal of algebraic combinatorics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arzhantseva, Goulnara</au><au>Biswas, Arindam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Logarithmic girth expander graphs of SLn(Fp)</atitle><jtitle>Journal of algebraic combinatorics</jtitle><stitle>J Algebr Comb</stitle><date>2022-11-01</date><risdate>2022</risdate><volume>56</volume><issue>3</issue><spage>691</spage><epage>723</epage><pages>691-723</pages><issn>0925-9899</issn><eissn>1572-9192</eissn><abstract>We provide an explicit construction of finite 4-regular graphs
(
Γ
k
)
k
∈
N
with
girth
Γ
k
→
∞
as
k
→
∞
and
diam
Γ
k
girth
Γ
k
⩽
D
for some
D
>
0
and all
k
∈
N
. For each fixed dimension
n
⩾
2
,
we find a pair of matrices in
S
L
n
(
Z
)
such that (i) they generate a free subgroup, (ii) their reductions
mod
p
generate
S
L
n
(
F
p
)
for all sufficiently large primes
p
, (iii) the corresponding Cayley graphs of
S
L
n
(
F
p
)
have girth at least
c
n
log
p
for some
c
n
>
0
. Relying on growth results (with no use of expansion properties of the involved graphs), we observe that the diameter of those Cayley graphs is at most
O
(
log
p
)
. This gives infinite sequences of finite 4-regular Cayley graphs of
S
L
n
(
F
p
)
as
p
→
∞
with large girth and bounded diameter-by-girth ratio. These are the first explicit examples in all dimensions
n
⩾
2
(all prior examples were in
n
=
2
). Moreover, they happen to be expanders. Together with Margulis’ and Lubotzky–Phillips–Sarnak’s classical constructions, these new graphs are the only known explicit logarithmic girth Cayley graph expanders.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10801-022-01128-z</doi><tpages>33</tpages><orcidid>https://orcid.org/0000-0001-6114-6589</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-9899 |
ispartof | Journal of algebraic combinatorics, 2022-11, Vol.56 (3), p.691-723 |
issn | 0925-9899 1572-9192 |
language | eng |
recordid | cdi_proquest_journals_2719458013 |
source | Springer Nature - Complete Springer Journals |
subjects | Combinatorics Computer Science Convex and Discrete Geometry Diameters Expanders Graphs Group Theory and Generalizations Lattices Logarithms Mathematics Mathematics and Statistics Order Ordered Algebraic Structures Subgroups |
title | Logarithmic girth expander graphs of SLn(Fp) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T19%3A52%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Logarithmic%20girth%20expander%20graphs%20of%20SLn(Fp)&rft.jtitle=Journal%20of%20algebraic%20combinatorics&rft.au=Arzhantseva,%20Goulnara&rft.date=2022-11-01&rft.volume=56&rft.issue=3&rft.spage=691&rft.epage=723&rft.pages=691-723&rft.issn=0925-9899&rft.eissn=1572-9192&rft_id=info:doi/10.1007/s10801-022-01128-z&rft_dat=%3Cproquest_sprin%3E2719458013%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2719458013&rft_id=info:pmid/&rfr_iscdi=true |