Logarithmic girth expander graphs of SLn(Fp)

We provide an explicit construction of finite 4-regular graphs ( Γ k ) k ∈ N with girth Γ k → ∞ as k → ∞ and diam Γ k girth Γ k ⩽ D for some D > 0 and all k ∈ N . For each fixed dimension n ⩾ 2 , we find a pair of matrices in S L n ( Z ) such that (i) they generate a free subgroup, (ii) their red...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of algebraic combinatorics 2022-11, Vol.56 (3), p.691-723
Hauptverfasser: Arzhantseva, Goulnara, Biswas, Arindam
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 723
container_issue 3
container_start_page 691
container_title Journal of algebraic combinatorics
container_volume 56
creator Arzhantseva, Goulnara
Biswas, Arindam
description We provide an explicit construction of finite 4-regular graphs ( Γ k ) k ∈ N with girth Γ k → ∞ as k → ∞ and diam Γ k girth Γ k ⩽ D for some D > 0 and all k ∈ N . For each fixed dimension n ⩾ 2 , we find a pair of matrices in S L n ( Z ) such that (i) they generate a free subgroup, (ii) their reductions mod p generate S L n ( F p ) for all sufficiently large primes p , (iii) the corresponding Cayley graphs of S L n ( F p ) have girth at least c n log p for some c n > 0 . Relying on growth results (with no use of expansion properties of the involved graphs), we observe that the diameter of those Cayley graphs is at most O ( log p ) . This gives infinite sequences of finite 4-regular Cayley graphs of S L n ( F p ) as p → ∞ with large girth and bounded diameter-by-girth ratio. These are the first explicit examples in all dimensions n ⩾ 2 (all prior examples were in n = 2 ). Moreover, they happen to be expanders. Together with Margulis’ and Lubotzky–Phillips–Sarnak’s classical constructions, these new graphs are the only known explicit logarithmic girth Cayley graph expanders.
doi_str_mv 10.1007/s10801-022-01128-z
format Article
fullrecord <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_2719458013</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2719458013</sourcerecordid><originalsourceid>FETCH-LOGICAL-p227t-69e8364f038f49bd8847b20713e9d85b1dc2e11808661f51f98dba3129131f133</originalsourceid><addsrcrecordid>eNpFkE1LxDAURYMoWEf_gKuCGwWj7yX9yFvKMKNCwYW6Du00aTtoG5MOyPx6O1ZwdTeHe7mHsUuEOwTI7wOCAuQgBAdEofj-iEWY5oITkjhmEZBIOSmiU3YWwhYASGEasdtiaErfje1nt4mbzo9tbL5d2dfGx40vXRviwcavRX-9djfn7MSWH8Fc_OWCva9Xb8snXrw8Pi8fCu6EyEeekVEySyxIZROqaqWSvBKQozRUq7TCeiMMogKVZWhTtKTqqpQoCCValHLBruZe54evnQmj3g4730-TWuRISTp9PVBypoLzXd8Y_08h6IMWPWvRkxb9q0Xv5Q8zaFLP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2719458013</pqid></control><display><type>article</type><title>Logarithmic girth expander graphs of SLn(Fp)</title><source>Springer Nature - Complete Springer Journals</source><creator>Arzhantseva, Goulnara ; Biswas, Arindam</creator><creatorcontrib>Arzhantseva, Goulnara ; Biswas, Arindam</creatorcontrib><description>We provide an explicit construction of finite 4-regular graphs ( Γ k ) k ∈ N with girth Γ k → ∞ as k → ∞ and diam Γ k girth Γ k ⩽ D for some D &gt; 0 and all k ∈ N . For each fixed dimension n ⩾ 2 , we find a pair of matrices in S L n ( Z ) such that (i) they generate a free subgroup, (ii) their reductions mod p generate S L n ( F p ) for all sufficiently large primes p , (iii) the corresponding Cayley graphs of S L n ( F p ) have girth at least c n log p for some c n &gt; 0 . Relying on growth results (with no use of expansion properties of the involved graphs), we observe that the diameter of those Cayley graphs is at most O ( log p ) . This gives infinite sequences of finite 4-regular Cayley graphs of S L n ( F p ) as p → ∞ with large girth and bounded diameter-by-girth ratio. These are the first explicit examples in all dimensions n ⩾ 2 (all prior examples were in n = 2 ). Moreover, they happen to be expanders. Together with Margulis’ and Lubotzky–Phillips–Sarnak’s classical constructions, these new graphs are the only known explicit logarithmic girth Cayley graph expanders.</description><identifier>ISSN: 0925-9899</identifier><identifier>EISSN: 1572-9192</identifier><identifier>DOI: 10.1007/s10801-022-01128-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Combinatorics ; Computer Science ; Convex and Discrete Geometry ; Diameters ; Expanders ; Graphs ; Group Theory and Generalizations ; Lattices ; Logarithms ; Mathematics ; Mathematics and Statistics ; Order ; Ordered Algebraic Structures ; Subgroups</subject><ispartof>Journal of algebraic combinatorics, 2022-11, Vol.56 (3), p.691-723</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-6114-6589</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10801-022-01128-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10801-022-01128-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Arzhantseva, Goulnara</creatorcontrib><creatorcontrib>Biswas, Arindam</creatorcontrib><title>Logarithmic girth expander graphs of SLn(Fp)</title><title>Journal of algebraic combinatorics</title><addtitle>J Algebr Comb</addtitle><description>We provide an explicit construction of finite 4-regular graphs ( Γ k ) k ∈ N with girth Γ k → ∞ as k → ∞ and diam Γ k girth Γ k ⩽ D for some D &gt; 0 and all k ∈ N . For each fixed dimension n ⩾ 2 , we find a pair of matrices in S L n ( Z ) such that (i) they generate a free subgroup, (ii) their reductions mod p generate S L n ( F p ) for all sufficiently large primes p , (iii) the corresponding Cayley graphs of S L n ( F p ) have girth at least c n log p for some c n &gt; 0 . Relying on growth results (with no use of expansion properties of the involved graphs), we observe that the diameter of those Cayley graphs is at most O ( log p ) . This gives infinite sequences of finite 4-regular Cayley graphs of S L n ( F p ) as p → ∞ with large girth and bounded diameter-by-girth ratio. These are the first explicit examples in all dimensions n ⩾ 2 (all prior examples were in n = 2 ). Moreover, they happen to be expanders. Together with Margulis’ and Lubotzky–Phillips–Sarnak’s classical constructions, these new graphs are the only known explicit logarithmic girth Cayley graph expanders.</description><subject>Combinatorics</subject><subject>Computer Science</subject><subject>Convex and Discrete Geometry</subject><subject>Diameters</subject><subject>Expanders</subject><subject>Graphs</subject><subject>Group Theory and Generalizations</subject><subject>Lattices</subject><subject>Logarithms</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Order</subject><subject>Ordered Algebraic Structures</subject><subject>Subgroups</subject><issn>0925-9899</issn><issn>1572-9192</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpFkE1LxDAURYMoWEf_gKuCGwWj7yX9yFvKMKNCwYW6Du00aTtoG5MOyPx6O1ZwdTeHe7mHsUuEOwTI7wOCAuQgBAdEofj-iEWY5oITkjhmEZBIOSmiU3YWwhYASGEasdtiaErfje1nt4mbzo9tbL5d2dfGx40vXRviwcavRX-9djfn7MSWH8Fc_OWCva9Xb8snXrw8Pi8fCu6EyEeekVEySyxIZROqaqWSvBKQozRUq7TCeiMMogKVZWhTtKTqqpQoCCValHLBruZe54evnQmj3g4730-TWuRISTp9PVBypoLzXd8Y_08h6IMWPWvRkxb9q0Xv5Q8zaFLP</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Arzhantseva, Goulnara</creator><creator>Biswas, Arindam</creator><general>Springer US</general><general>Springer Nature B.V</general><scope/><orcidid>https://orcid.org/0000-0001-6114-6589</orcidid></search><sort><creationdate>20221101</creationdate><title>Logarithmic girth expander graphs of SLn(Fp)</title><author>Arzhantseva, Goulnara ; Biswas, Arindam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p227t-69e8364f038f49bd8847b20713e9d85b1dc2e11808661f51f98dba3129131f133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Combinatorics</topic><topic>Computer Science</topic><topic>Convex and Discrete Geometry</topic><topic>Diameters</topic><topic>Expanders</topic><topic>Graphs</topic><topic>Group Theory and Generalizations</topic><topic>Lattices</topic><topic>Logarithms</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Order</topic><topic>Ordered Algebraic Structures</topic><topic>Subgroups</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arzhantseva, Goulnara</creatorcontrib><creatorcontrib>Biswas, Arindam</creatorcontrib><jtitle>Journal of algebraic combinatorics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arzhantseva, Goulnara</au><au>Biswas, Arindam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Logarithmic girth expander graphs of SLn(Fp)</atitle><jtitle>Journal of algebraic combinatorics</jtitle><stitle>J Algebr Comb</stitle><date>2022-11-01</date><risdate>2022</risdate><volume>56</volume><issue>3</issue><spage>691</spage><epage>723</epage><pages>691-723</pages><issn>0925-9899</issn><eissn>1572-9192</eissn><abstract>We provide an explicit construction of finite 4-regular graphs ( Γ k ) k ∈ N with girth Γ k → ∞ as k → ∞ and diam Γ k girth Γ k ⩽ D for some D &gt; 0 and all k ∈ N . For each fixed dimension n ⩾ 2 , we find a pair of matrices in S L n ( Z ) such that (i) they generate a free subgroup, (ii) their reductions mod p generate S L n ( F p ) for all sufficiently large primes p , (iii) the corresponding Cayley graphs of S L n ( F p ) have girth at least c n log p for some c n &gt; 0 . Relying on growth results (with no use of expansion properties of the involved graphs), we observe that the diameter of those Cayley graphs is at most O ( log p ) . This gives infinite sequences of finite 4-regular Cayley graphs of S L n ( F p ) as p → ∞ with large girth and bounded diameter-by-girth ratio. These are the first explicit examples in all dimensions n ⩾ 2 (all prior examples were in n = 2 ). Moreover, they happen to be expanders. Together with Margulis’ and Lubotzky–Phillips–Sarnak’s classical constructions, these new graphs are the only known explicit logarithmic girth Cayley graph expanders.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10801-022-01128-z</doi><tpages>33</tpages><orcidid>https://orcid.org/0000-0001-6114-6589</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0925-9899
ispartof Journal of algebraic combinatorics, 2022-11, Vol.56 (3), p.691-723
issn 0925-9899
1572-9192
language eng
recordid cdi_proquest_journals_2719458013
source Springer Nature - Complete Springer Journals
subjects Combinatorics
Computer Science
Convex and Discrete Geometry
Diameters
Expanders
Graphs
Group Theory and Generalizations
Lattices
Logarithms
Mathematics
Mathematics and Statistics
Order
Ordered Algebraic Structures
Subgroups
title Logarithmic girth expander graphs of SLn(Fp)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T19%3A52%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Logarithmic%20girth%20expander%20graphs%20of%20SLn(Fp)&rft.jtitle=Journal%20of%20algebraic%20combinatorics&rft.au=Arzhantseva,%20Goulnara&rft.date=2022-11-01&rft.volume=56&rft.issue=3&rft.spage=691&rft.epage=723&rft.pages=691-723&rft.issn=0925-9899&rft.eissn=1572-9192&rft_id=info:doi/10.1007/s10801-022-01128-z&rft_dat=%3Cproquest_sprin%3E2719458013%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2719458013&rft_id=info:pmid/&rfr_iscdi=true