Functional peaks‐over‐threshold analysis
Peaks‐over‐threshold analysis using the generalised Pareto distribution is widely applied in modelling tails of univariate random variables, but much information may be lost when complex extreme events are studied using univariate results. In this paper, we extend peaks‐over‐threshold analysis to ex...
Gespeichert in:
Veröffentlicht in: | Journal of the Royal Statistical Society. Series B, Statistical methodology Statistical methodology, 2022-09, Vol.84 (4), p.1392-1422 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1422 |
---|---|
container_issue | 4 |
container_start_page | 1392 |
container_title | Journal of the Royal Statistical Society. Series B, Statistical methodology |
container_volume | 84 |
creator | de Fondeville, Raphaël Davison, Anthony C. |
description | Peaks‐over‐threshold analysis using the generalised Pareto distribution is widely applied in modelling tails of univariate random variables, but much information may be lost when complex extreme events are studied using univariate results. In this paper, we extend peaks‐over‐threshold analysis to extremes of functional data. Threshold exceedances defined using a functional r are modelled by the generalised r‐Pareto process, a functional generalisation of the generalised Pareto distribution that covers the three classical regimes for the decay of tail probabilities, and that is the only possible continuous limit for r‐exceedances of a properly rescaled process. We give construction rules, simulation algorithms and inference procedures for generalised r‐Pareto processes, discuss model validation and apply the new methodology to extreme European windstorms and heavy spatial rainfall. |
doi_str_mv | 10.1111/rssb.12498 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2719330220</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2719330220</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3708-c57e1b9894d799a54dd711b301e4e061ca72fc2c3ef62d660d4cde400cdeb1e23</originalsourceid><addsrcrecordid>eNp9kMFKAzEQhoMoWKsXn6DgTdyaSdJkc9RiVSgIVs8hm2Tp1rVbM7tKbz6Cz-iTmLqe_Q_zD8w3w_ATcgp0DEmXEbEYAxM63yMDEFJlOpf5fuq51JkSwA7JEeKKJknFB-Ri1q1dWzVrW482wb7g9-dX8x5isnYZAy6b2o9smm6xwmNyUNoaw8mfD8nz7OZpepfNH27vp1fzzHFF88xNVIBC51p4pbWdCO8VQMEpBBGoBGcVKx1zPJSSeSmpF84HQWmqBQTGh-Ssv7uJzVsXsDWrpovpCTRMgeacMkYTdd5TLjaIMZRmE6tXG7cGqNmlYXZpmN80Egw9_FHVYfsPaR4Xi-t-5wfTNGPT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2719330220</pqid></control><display><type>article</type><title>Functional peaks‐over‐threshold analysis</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>Wiley Online Library Journals Frontfile Complete</source><source>EBSCOhost Business Source Complete</source><creator>de Fondeville, Raphaël ; Davison, Anthony C.</creator><creatorcontrib>de Fondeville, Raphaël ; Davison, Anthony C.</creatorcontrib><description>Peaks‐over‐threshold analysis using the generalised Pareto distribution is widely applied in modelling tails of univariate random variables, but much information may be lost when complex extreme events are studied using univariate results. In this paper, we extend peaks‐over‐threshold analysis to extremes of functional data. Threshold exceedances defined using a functional r are modelled by the generalised r‐Pareto process, a functional generalisation of the generalised Pareto distribution that covers the three classical regimes for the decay of tail probabilities, and that is the only possible continuous limit for r‐exceedances of a properly rescaled process. We give construction rules, simulation algorithms and inference procedures for generalised r‐Pareto processes, discuss model validation and apply the new methodology to extreme European windstorms and heavy spatial rainfall.</description><identifier>ISSN: 1369-7412</identifier><identifier>EISSN: 1467-9868</identifier><identifier>DOI: 10.1111/rssb.12498</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Algorithms ; Extremes ; functional regular variation ; peaks‐over‐threshold analysis ; Rainfall ; Random variables ; Regression analysis ; r‐Pareto process ; Simulation ; spatial statistics ; Statistical methods ; Statistics ; statistics of extremes ; windstorm</subject><ispartof>Journal of the Royal Statistical Society. Series B, Statistical methodology, 2022-09, Vol.84 (4), p.1392-1422</ispartof><rights>2022 The Authors. published by John Wiley & Sons Ltd on behalf of Royal Statistical Society.</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3708-c57e1b9894d799a54dd711b301e4e061ca72fc2c3ef62d660d4cde400cdeb1e23</citedby><cites>FETCH-LOGICAL-c3708-c57e1b9894d799a54dd711b301e4e061ca72fc2c3ef62d660d4cde400cdeb1e23</cites><orcidid>0000-0002-9439-6872 ; 0000-0002-8537-6191</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Frssb.12498$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Frssb.12498$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>de Fondeville, Raphaël</creatorcontrib><creatorcontrib>Davison, Anthony C.</creatorcontrib><title>Functional peaks‐over‐threshold analysis</title><title>Journal of the Royal Statistical Society. Series B, Statistical methodology</title><description>Peaks‐over‐threshold analysis using the generalised Pareto distribution is widely applied in modelling tails of univariate random variables, but much information may be lost when complex extreme events are studied using univariate results. In this paper, we extend peaks‐over‐threshold analysis to extremes of functional data. Threshold exceedances defined using a functional r are modelled by the generalised r‐Pareto process, a functional generalisation of the generalised Pareto distribution that covers the three classical regimes for the decay of tail probabilities, and that is the only possible continuous limit for r‐exceedances of a properly rescaled process. We give construction rules, simulation algorithms and inference procedures for generalised r‐Pareto processes, discuss model validation and apply the new methodology to extreme European windstorms and heavy spatial rainfall.</description><subject>Algorithms</subject><subject>Extremes</subject><subject>functional regular variation</subject><subject>peaks‐over‐threshold analysis</subject><subject>Rainfall</subject><subject>Random variables</subject><subject>Regression analysis</subject><subject>r‐Pareto process</subject><subject>Simulation</subject><subject>spatial statistics</subject><subject>Statistical methods</subject><subject>Statistics</subject><subject>statistics of extremes</subject><subject>windstorm</subject><issn>1369-7412</issn><issn>1467-9868</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp9kMFKAzEQhoMoWKsXn6DgTdyaSdJkc9RiVSgIVs8hm2Tp1rVbM7tKbz6Cz-iTmLqe_Q_zD8w3w_ATcgp0DEmXEbEYAxM63yMDEFJlOpf5fuq51JkSwA7JEeKKJknFB-Ri1q1dWzVrW482wb7g9-dX8x5isnYZAy6b2o9smm6xwmNyUNoaw8mfD8nz7OZpepfNH27vp1fzzHFF88xNVIBC51p4pbWdCO8VQMEpBBGoBGcVKx1zPJSSeSmpF84HQWmqBQTGh-Ssv7uJzVsXsDWrpovpCTRMgeacMkYTdd5TLjaIMZRmE6tXG7cGqNmlYXZpmN80Egw9_FHVYfsPaR4Xi-t-5wfTNGPT</recordid><startdate>202209</startdate><enddate>202209</enddate><creator>de Fondeville, Raphaël</creator><creator>Davison, Anthony C.</creator><general>Oxford University Press</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8BJ</scope><scope>8FD</scope><scope>FQK</scope><scope>JBE</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-9439-6872</orcidid><orcidid>https://orcid.org/0000-0002-8537-6191</orcidid></search><sort><creationdate>202209</creationdate><title>Functional peaks‐over‐threshold analysis</title><author>de Fondeville, Raphaël ; Davison, Anthony C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3708-c57e1b9894d799a54dd711b301e4e061ca72fc2c3ef62d660d4cde400cdeb1e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Extremes</topic><topic>functional regular variation</topic><topic>peaks‐over‐threshold analysis</topic><topic>Rainfall</topic><topic>Random variables</topic><topic>Regression analysis</topic><topic>r‐Pareto process</topic><topic>Simulation</topic><topic>spatial statistics</topic><topic>Statistical methods</topic><topic>Statistics</topic><topic>statistics of extremes</topic><topic>windstorm</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Fondeville, Raphaël</creatorcontrib><creatorcontrib>Davison, Anthony C.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Technology Research Database</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of the Royal Statistical Society. Series B, Statistical methodology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Fondeville, Raphaël</au><au>Davison, Anthony C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Functional peaks‐over‐threshold analysis</atitle><jtitle>Journal of the Royal Statistical Society. Series B, Statistical methodology</jtitle><date>2022-09</date><risdate>2022</risdate><volume>84</volume><issue>4</issue><spage>1392</spage><epage>1422</epage><pages>1392-1422</pages><issn>1369-7412</issn><eissn>1467-9868</eissn><abstract>Peaks‐over‐threshold analysis using the generalised Pareto distribution is widely applied in modelling tails of univariate random variables, but much information may be lost when complex extreme events are studied using univariate results. In this paper, we extend peaks‐over‐threshold analysis to extremes of functional data. Threshold exceedances defined using a functional r are modelled by the generalised r‐Pareto process, a functional generalisation of the generalised Pareto distribution that covers the three classical regimes for the decay of tail probabilities, and that is the only possible continuous limit for r‐exceedances of a properly rescaled process. We give construction rules, simulation algorithms and inference procedures for generalised r‐Pareto processes, discuss model validation and apply the new methodology to extreme European windstorms and heavy spatial rainfall.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><doi>10.1111/rssb.12498</doi><tpages>31</tpages><orcidid>https://orcid.org/0000-0002-9439-6872</orcidid><orcidid>https://orcid.org/0000-0002-8537-6191</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1369-7412 |
ispartof | Journal of the Royal Statistical Society. Series B, Statistical methodology, 2022-09, Vol.84 (4), p.1392-1422 |
issn | 1369-7412 1467-9868 |
language | eng |
recordid | cdi_proquest_journals_2719330220 |
source | Oxford University Press Journals All Titles (1996-Current); Wiley Online Library Journals Frontfile Complete; EBSCOhost Business Source Complete |
subjects | Algorithms Extremes functional regular variation peaks‐over‐threshold analysis Rainfall Random variables Regression analysis r‐Pareto process Simulation spatial statistics Statistical methods Statistics statistics of extremes windstorm |
title | Functional peaks‐over‐threshold analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T00%3A16%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Functional%20peaks%E2%80%90over%E2%80%90threshold%20analysis&rft.jtitle=Journal%20of%20the%20Royal%20Statistical%20Society.%20Series%20B,%20Statistical%20methodology&rft.au=de%20Fondeville,%20Rapha%C3%ABl&rft.date=2022-09&rft.volume=84&rft.issue=4&rft.spage=1392&rft.epage=1422&rft.pages=1392-1422&rft.issn=1369-7412&rft.eissn=1467-9868&rft_id=info:doi/10.1111/rssb.12498&rft_dat=%3Cproquest_cross%3E2719330220%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2719330220&rft_id=info:pmid/&rfr_iscdi=true |