Universal prediction band via semi‐definite programming
We propose a computationally efficient method to construct nonparametric, heteroscedastic prediction bands for uncertainty quantification, with or without any user‐specified predictive model. Our approach provides an alternative to the now‐standard conformal prediction for uncertainty quantification...
Gespeichert in:
Veröffentlicht in: | Journal of the Royal Statistical Society. Series B, Statistical methodology Statistical methodology, 2022-09, Vol.84 (4), p.1558-1580 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1580 |
---|---|
container_issue | 4 |
container_start_page | 1558 |
container_title | Journal of the Royal Statistical Society. Series B, Statistical methodology |
container_volume | 84 |
creator | Liang, Tengyuan |
description | We propose a computationally efficient method to construct nonparametric, heteroscedastic prediction bands for uncertainty quantification, with or without any user‐specified predictive model. Our approach provides an alternative to the now‐standard conformal prediction for uncertainty quantification, with novel theoretical insights and computational advantages. The data‐adaptive prediction band is universally applicable with minimal distributional assumptions, has strong non‐asymptotic coverage properties, and is easy to implement using standard convex programs. Our approach can be viewed as a novel variance interpolation with confidence and further leverages techniques from semi‐definite programming and sum‐of‐squares optimization. Theoretical and numerical performances for the proposed approach for uncertainty quantification are analysed. |
doi_str_mv | 10.1111/rssb.12542 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2719330114</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2719330114</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3292-d792afab664b9f5986993527ec6829411f9a7c14c16891bb91d31875f3848c563</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhS0EEqWw4QSR2CGlZGzHP0uo-JMqIVG6thzHrlw1SbHTou44AmfkJLiENW8zs_hm3tND6BKKCSTdhBirCeCS4iM0Asp4LgUTx2knTOacAj5FZzGuiiTGyQjJRet3NkS9zjbB1t70vmuzSrd1tvM6i7bx359ftXW-9b1NTLcMuml8uzxHJ06vo734m2O0eLh_mz7ls5fH5-ntLDcES5zXXGLtdMUYraQrUxwpSYm5NUxgSQGc1NwANcCEhKqSUBMQvHREUGFKRsboavibvN-3NvZq1W1DmywV5iAJKQBooq4HyoQuxmCd2gTf6LBXUKhDNepQjfqtJsEwwB9-bff_kOp1Pr8bbn4A4QJl-g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2719330114</pqid></control><display><type>article</type><title>Universal prediction band via semi‐definite programming</title><source>EBSCOhost Business Source Complete</source><source>Access via Wiley Online Library</source><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Liang, Tengyuan</creator><creatorcontrib>Liang, Tengyuan</creatorcontrib><description>We propose a computationally efficient method to construct nonparametric, heteroscedastic prediction bands for uncertainty quantification, with or without any user‐specified predictive model. Our approach provides an alternative to the now‐standard conformal prediction for uncertainty quantification, with novel theoretical insights and computational advantages. The data‐adaptive prediction band is universally applicable with minimal distributional assumptions, has strong non‐asymptotic coverage properties, and is easy to implement using standard convex programs. Our approach can be viewed as a novel variance interpolation with confidence and further leverages techniques from semi‐definite programming and sum‐of‐squares optimization. Theoretical and numerical performances for the proposed approach for uncertainty quantification are analysed.</description><identifier>ISSN: 1369-7412</identifier><identifier>EISSN: 1467-9868</identifier><identifier>DOI: 10.1111/rssb.12542</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Asymptotic properties ; heteroscedasticity ; Interpolation ; Measurement ; nonparametric prediction band ; Nonparametric statistics ; Optimization ; Prediction models ; Predictions ; Regression analysis ; Semidefinite programming ; semi‐definite programming ; Statistical methods ; Statistics ; sum‐of‐squares ; Uncertainty ; uncertainty quantification</subject><ispartof>Journal of the Royal Statistical Society. Series B, Statistical methodology, 2022-09, Vol.84 (4), p.1558-1580</ispartof><rights>2022 The Author. published by John Wiley & Sons Ltd on behalf of Royal Statistical Society.</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3292-d792afab664b9f5986993527ec6829411f9a7c14c16891bb91d31875f3848c563</cites><orcidid>0000-0002-6202-9605</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Frssb.12542$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Frssb.12542$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Liang, Tengyuan</creatorcontrib><title>Universal prediction band via semi‐definite programming</title><title>Journal of the Royal Statistical Society. Series B, Statistical methodology</title><description>We propose a computationally efficient method to construct nonparametric, heteroscedastic prediction bands for uncertainty quantification, with or without any user‐specified predictive model. Our approach provides an alternative to the now‐standard conformal prediction for uncertainty quantification, with novel theoretical insights and computational advantages. The data‐adaptive prediction band is universally applicable with minimal distributional assumptions, has strong non‐asymptotic coverage properties, and is easy to implement using standard convex programs. Our approach can be viewed as a novel variance interpolation with confidence and further leverages techniques from semi‐definite programming and sum‐of‐squares optimization. Theoretical and numerical performances for the proposed approach for uncertainty quantification are analysed.</description><subject>Asymptotic properties</subject><subject>heteroscedasticity</subject><subject>Interpolation</subject><subject>Measurement</subject><subject>nonparametric prediction band</subject><subject>Nonparametric statistics</subject><subject>Optimization</subject><subject>Prediction models</subject><subject>Predictions</subject><subject>Regression analysis</subject><subject>Semidefinite programming</subject><subject>semi‐definite programming</subject><subject>Statistical methods</subject><subject>Statistics</subject><subject>sum‐of‐squares</subject><subject>Uncertainty</subject><subject>uncertainty quantification</subject><issn>1369-7412</issn><issn>1467-9868</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp9kE1OwzAQhS0EEqWw4QSR2CGlZGzHP0uo-JMqIVG6thzHrlw1SbHTou44AmfkJLiENW8zs_hm3tND6BKKCSTdhBirCeCS4iM0Asp4LgUTx2knTOacAj5FZzGuiiTGyQjJRet3NkS9zjbB1t70vmuzSrd1tvM6i7bx359ftXW-9b1NTLcMuml8uzxHJ06vo734m2O0eLh_mz7ls5fH5-ntLDcES5zXXGLtdMUYraQrUxwpSYm5NUxgSQGc1NwANcCEhKqSUBMQvHREUGFKRsboavibvN-3NvZq1W1DmywV5iAJKQBooq4HyoQuxmCd2gTf6LBXUKhDNepQjfqtJsEwwB9-bff_kOp1Pr8bbn4A4QJl-g</recordid><startdate>202209</startdate><enddate>202209</enddate><creator>Liang, Tengyuan</creator><general>Oxford University Press</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8BJ</scope><scope>8FD</scope><scope>FQK</scope><scope>JBE</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-6202-9605</orcidid></search><sort><creationdate>202209</creationdate><title>Universal prediction band via semi‐definite programming</title><author>Liang, Tengyuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3292-d792afab664b9f5986993527ec6829411f9a7c14c16891bb91d31875f3848c563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Asymptotic properties</topic><topic>heteroscedasticity</topic><topic>Interpolation</topic><topic>Measurement</topic><topic>nonparametric prediction band</topic><topic>Nonparametric statistics</topic><topic>Optimization</topic><topic>Prediction models</topic><topic>Predictions</topic><topic>Regression analysis</topic><topic>Semidefinite programming</topic><topic>semi‐definite programming</topic><topic>Statistical methods</topic><topic>Statistics</topic><topic>sum‐of‐squares</topic><topic>Uncertainty</topic><topic>uncertainty quantification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liang, Tengyuan</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Technology Research Database</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of the Royal Statistical Society. Series B, Statistical methodology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liang, Tengyuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Universal prediction band via semi‐definite programming</atitle><jtitle>Journal of the Royal Statistical Society. Series B, Statistical methodology</jtitle><date>2022-09</date><risdate>2022</risdate><volume>84</volume><issue>4</issue><spage>1558</spage><epage>1580</epage><pages>1558-1580</pages><issn>1369-7412</issn><eissn>1467-9868</eissn><abstract>We propose a computationally efficient method to construct nonparametric, heteroscedastic prediction bands for uncertainty quantification, with or without any user‐specified predictive model. Our approach provides an alternative to the now‐standard conformal prediction for uncertainty quantification, with novel theoretical insights and computational advantages. The data‐adaptive prediction band is universally applicable with minimal distributional assumptions, has strong non‐asymptotic coverage properties, and is easy to implement using standard convex programs. Our approach can be viewed as a novel variance interpolation with confidence and further leverages techniques from semi‐definite programming and sum‐of‐squares optimization. Theoretical and numerical performances for the proposed approach for uncertainty quantification are analysed.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><doi>10.1111/rssb.12542</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0002-6202-9605</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1369-7412 |
ispartof | Journal of the Royal Statistical Society. Series B, Statistical methodology, 2022-09, Vol.84 (4), p.1558-1580 |
issn | 1369-7412 1467-9868 |
language | eng |
recordid | cdi_proquest_journals_2719330114 |
source | EBSCOhost Business Source Complete; Access via Wiley Online Library; Oxford University Press Journals All Titles (1996-Current) |
subjects | Asymptotic properties heteroscedasticity Interpolation Measurement nonparametric prediction band Nonparametric statistics Optimization Prediction models Predictions Regression analysis Semidefinite programming semi‐definite programming Statistical methods Statistics sum‐of‐squares Uncertainty uncertainty quantification |
title | Universal prediction band via semi‐definite programming |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T21%3A20%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Universal%20prediction%20band%20via%20semi%E2%80%90definite%20programming&rft.jtitle=Journal%20of%20the%20Royal%20Statistical%20Society.%20Series%20B,%20Statistical%20methodology&rft.au=Liang,%20Tengyuan&rft.date=2022-09&rft.volume=84&rft.issue=4&rft.spage=1558&rft.epage=1580&rft.pages=1558-1580&rft.issn=1369-7412&rft.eissn=1467-9868&rft_id=info:doi/10.1111/rssb.12542&rft_dat=%3Cproquest_cross%3E2719330114%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2719330114&rft_id=info:pmid/&rfr_iscdi=true |