Universal prediction band via semi‐definite programming

We propose a computationally efficient method to construct nonparametric, heteroscedastic prediction bands for uncertainty quantification, with or without any user‐specified predictive model. Our approach provides an alternative to the now‐standard conformal prediction for uncertainty quantification...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Royal Statistical Society. Series B, Statistical methodology Statistical methodology, 2022-09, Vol.84 (4), p.1558-1580
1. Verfasser: Liang, Tengyuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1580
container_issue 4
container_start_page 1558
container_title Journal of the Royal Statistical Society. Series B, Statistical methodology
container_volume 84
creator Liang, Tengyuan
description We propose a computationally efficient method to construct nonparametric, heteroscedastic prediction bands for uncertainty quantification, with or without any user‐specified predictive model. Our approach provides an alternative to the now‐standard conformal prediction for uncertainty quantification, with novel theoretical insights and computational advantages. The data‐adaptive prediction band is universally applicable with minimal distributional assumptions, has strong non‐asymptotic coverage properties, and is easy to implement using standard convex programs. Our approach can be viewed as a novel variance interpolation with confidence and further leverages techniques from semi‐definite programming and sum‐of‐squares optimization. Theoretical and numerical performances for the proposed approach for uncertainty quantification are analysed.
doi_str_mv 10.1111/rssb.12542
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2719330114</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2719330114</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3292-d792afab664b9f5986993527ec6829411f9a7c14c16891bb91d31875f3848c563</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhS0EEqWw4QSR2CGlZGzHP0uo-JMqIVG6thzHrlw1SbHTou44AmfkJLiENW8zs_hm3tND6BKKCSTdhBirCeCS4iM0Asp4LgUTx2knTOacAj5FZzGuiiTGyQjJRet3NkS9zjbB1t70vmuzSrd1tvM6i7bx359ftXW-9b1NTLcMuml8uzxHJ06vo734m2O0eLh_mz7ls5fH5-ntLDcES5zXXGLtdMUYraQrUxwpSYm5NUxgSQGc1NwANcCEhKqSUBMQvHREUGFKRsboavibvN-3NvZq1W1DmywV5iAJKQBooq4HyoQuxmCd2gTf6LBXUKhDNepQjfqtJsEwwB9-bff_kOp1Pr8bbn4A4QJl-g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2719330114</pqid></control><display><type>article</type><title>Universal prediction band via semi‐definite programming</title><source>EBSCOhost Business Source Complete</source><source>Access via Wiley Online Library</source><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Liang, Tengyuan</creator><creatorcontrib>Liang, Tengyuan</creatorcontrib><description>We propose a computationally efficient method to construct nonparametric, heteroscedastic prediction bands for uncertainty quantification, with or without any user‐specified predictive model. Our approach provides an alternative to the now‐standard conformal prediction for uncertainty quantification, with novel theoretical insights and computational advantages. The data‐adaptive prediction band is universally applicable with minimal distributional assumptions, has strong non‐asymptotic coverage properties, and is easy to implement using standard convex programs. Our approach can be viewed as a novel variance interpolation with confidence and further leverages techniques from semi‐definite programming and sum‐of‐squares optimization. Theoretical and numerical performances for the proposed approach for uncertainty quantification are analysed.</description><identifier>ISSN: 1369-7412</identifier><identifier>EISSN: 1467-9868</identifier><identifier>DOI: 10.1111/rssb.12542</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Asymptotic properties ; heteroscedasticity ; Interpolation ; Measurement ; nonparametric prediction band ; Nonparametric statistics ; Optimization ; Prediction models ; Predictions ; Regression analysis ; Semidefinite programming ; semi‐definite programming ; Statistical methods ; Statistics ; sum‐of‐squares ; Uncertainty ; uncertainty quantification</subject><ispartof>Journal of the Royal Statistical Society. Series B, Statistical methodology, 2022-09, Vol.84 (4), p.1558-1580</ispartof><rights>2022 The Author. published by John Wiley &amp; Sons Ltd on behalf of Royal Statistical Society.</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3292-d792afab664b9f5986993527ec6829411f9a7c14c16891bb91d31875f3848c563</cites><orcidid>0000-0002-6202-9605</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Frssb.12542$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Frssb.12542$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Liang, Tengyuan</creatorcontrib><title>Universal prediction band via semi‐definite programming</title><title>Journal of the Royal Statistical Society. Series B, Statistical methodology</title><description>We propose a computationally efficient method to construct nonparametric, heteroscedastic prediction bands for uncertainty quantification, with or without any user‐specified predictive model. Our approach provides an alternative to the now‐standard conformal prediction for uncertainty quantification, with novel theoretical insights and computational advantages. The data‐adaptive prediction band is universally applicable with minimal distributional assumptions, has strong non‐asymptotic coverage properties, and is easy to implement using standard convex programs. Our approach can be viewed as a novel variance interpolation with confidence and further leverages techniques from semi‐definite programming and sum‐of‐squares optimization. Theoretical and numerical performances for the proposed approach for uncertainty quantification are analysed.</description><subject>Asymptotic properties</subject><subject>heteroscedasticity</subject><subject>Interpolation</subject><subject>Measurement</subject><subject>nonparametric prediction band</subject><subject>Nonparametric statistics</subject><subject>Optimization</subject><subject>Prediction models</subject><subject>Predictions</subject><subject>Regression analysis</subject><subject>Semidefinite programming</subject><subject>semi‐definite programming</subject><subject>Statistical methods</subject><subject>Statistics</subject><subject>sum‐of‐squares</subject><subject>Uncertainty</subject><subject>uncertainty quantification</subject><issn>1369-7412</issn><issn>1467-9868</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp9kE1OwzAQhS0EEqWw4QSR2CGlZGzHP0uo-JMqIVG6thzHrlw1SbHTou44AmfkJLiENW8zs_hm3tND6BKKCSTdhBirCeCS4iM0Asp4LgUTx2knTOacAj5FZzGuiiTGyQjJRet3NkS9zjbB1t70vmuzSrd1tvM6i7bx359ftXW-9b1NTLcMuml8uzxHJ06vo734m2O0eLh_mz7ls5fH5-ntLDcES5zXXGLtdMUYraQrUxwpSYm5NUxgSQGc1NwANcCEhKqSUBMQvHREUGFKRsboavibvN-3NvZq1W1DmywV5iAJKQBooq4HyoQuxmCd2gTf6LBXUKhDNepQjfqtJsEwwB9-bff_kOp1Pr8bbn4A4QJl-g</recordid><startdate>202209</startdate><enddate>202209</enddate><creator>Liang, Tengyuan</creator><general>Oxford University Press</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8BJ</scope><scope>8FD</scope><scope>FQK</scope><scope>JBE</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-6202-9605</orcidid></search><sort><creationdate>202209</creationdate><title>Universal prediction band via semi‐definite programming</title><author>Liang, Tengyuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3292-d792afab664b9f5986993527ec6829411f9a7c14c16891bb91d31875f3848c563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Asymptotic properties</topic><topic>heteroscedasticity</topic><topic>Interpolation</topic><topic>Measurement</topic><topic>nonparametric prediction band</topic><topic>Nonparametric statistics</topic><topic>Optimization</topic><topic>Prediction models</topic><topic>Predictions</topic><topic>Regression analysis</topic><topic>Semidefinite programming</topic><topic>semi‐definite programming</topic><topic>Statistical methods</topic><topic>Statistics</topic><topic>sum‐of‐squares</topic><topic>Uncertainty</topic><topic>uncertainty quantification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liang, Tengyuan</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Technology Research Database</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of the Royal Statistical Society. Series B, Statistical methodology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liang, Tengyuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Universal prediction band via semi‐definite programming</atitle><jtitle>Journal of the Royal Statistical Society. Series B, Statistical methodology</jtitle><date>2022-09</date><risdate>2022</risdate><volume>84</volume><issue>4</issue><spage>1558</spage><epage>1580</epage><pages>1558-1580</pages><issn>1369-7412</issn><eissn>1467-9868</eissn><abstract>We propose a computationally efficient method to construct nonparametric, heteroscedastic prediction bands for uncertainty quantification, with or without any user‐specified predictive model. Our approach provides an alternative to the now‐standard conformal prediction for uncertainty quantification, with novel theoretical insights and computational advantages. The data‐adaptive prediction band is universally applicable with minimal distributional assumptions, has strong non‐asymptotic coverage properties, and is easy to implement using standard convex programs. Our approach can be viewed as a novel variance interpolation with confidence and further leverages techniques from semi‐definite programming and sum‐of‐squares optimization. Theoretical and numerical performances for the proposed approach for uncertainty quantification are analysed.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><doi>10.1111/rssb.12542</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0002-6202-9605</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1369-7412
ispartof Journal of the Royal Statistical Society. Series B, Statistical methodology, 2022-09, Vol.84 (4), p.1558-1580
issn 1369-7412
1467-9868
language eng
recordid cdi_proquest_journals_2719330114
source EBSCOhost Business Source Complete; Access via Wiley Online Library; Oxford University Press Journals All Titles (1996-Current)
subjects Asymptotic properties
heteroscedasticity
Interpolation
Measurement
nonparametric prediction band
Nonparametric statistics
Optimization
Prediction models
Predictions
Regression analysis
Semidefinite programming
semi‐definite programming
Statistical methods
Statistics
sum‐of‐squares
Uncertainty
uncertainty quantification
title Universal prediction band via semi‐definite programming
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T21%3A20%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Universal%20prediction%20band%20via%20semi%E2%80%90definite%20programming&rft.jtitle=Journal%20of%20the%20Royal%20Statistical%20Society.%20Series%20B,%20Statistical%20methodology&rft.au=Liang,%20Tengyuan&rft.date=2022-09&rft.volume=84&rft.issue=4&rft.spage=1558&rft.epage=1580&rft.pages=1558-1580&rft.issn=1369-7412&rft.eissn=1467-9868&rft_id=info:doi/10.1111/rssb.12542&rft_dat=%3Cproquest_cross%3E2719330114%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2719330114&rft_id=info:pmid/&rfr_iscdi=true