Designing an efficient unigram keyword detector for documents using Relative Entropy

In this work we propose a statistical approach to identify unigram keywords for a document. We identify unigram keywords as features which effectively captures the importance of a word in a document and evaluates its potential to be a keyword. We make use of relative entropy, displacement and varian...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Multimedia tools and applications 2022-11, Vol.81 (26), p.37747-37761
Hauptverfasser: Rathi, R. N., Mustafi, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 37761
container_issue 26
container_start_page 37747
container_title Multimedia tools and applications
container_volume 81
creator Rathi, R. N.
Mustafi, A.
description In this work we propose a statistical approach to identify unigram keywords for a document. We identify unigram keywords as features which effectively captures the importance of a word in a document and evaluates its potential to be a keyword. We make use of relative entropy, displacement and variance of terms in a document have been evaluated in the context of keyword identification. The proposed approach works on single documents without the requirement of any pre-training of the model. We also evaluate the effectiveness of our features against the gold standard of “term frequency” and compare the usefulness of the proposed feature set with term frequency. The results of our proposed method are presented and compared with existing algorithms.
doi_str_mv 10.1007/s11042-022-12657-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2719234270</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2719234270</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-1ddcfcaa22e4c126a84e3c297ae6df7aa7e0d698c8e5ba7cd92a3e93314864183</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFPAczRfu9k9Sq0fUBCknkNMJsvWNluTXW3_vakrePMwzByed2Z4ELpk9JpRqm4SY1RyQjknjJeFIrsjNGGFEkQpzo7zLCpKVEHZKTpLaUUpKwsuJ2h5B6ltQhsabAIG71vbQujxENommg1-h_1XFx120IPtu4h9LtfZYZOphId0SL7A2vTtJ-B56GO33Z-jE2_WCS5--xS93s-Xs0eyeH54mt0uiOWy7glzznprDOcgbX7bVBKE5bUyUDqvjFFAXVlXtoLizSjram4E1EIwWZWSVWKKrsa929h9DJB6veqGGPJJzRWruZBc0UzxkbKxSymC19vYbkzca0b1wZ4e7elsT__Y07scEmMoZTg0EP9W_5P6BtjNdHQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2719234270</pqid></control><display><type>article</type><title>Designing an efficient unigram keyword detector for documents using Relative Entropy</title><source>Springer Nature - Complete Springer Journals</source><creator>Rathi, R. N. ; Mustafi, A.</creator><creatorcontrib>Rathi, R. N. ; Mustafi, A.</creatorcontrib><description>In this work we propose a statistical approach to identify unigram keywords for a document. We identify unigram keywords as features which effectively captures the importance of a word in a document and evaluates its potential to be a keyword. We make use of relative entropy, displacement and variance of terms in a document have been evaluated in the context of keyword identification. The proposed approach works on single documents without the requirement of any pre-training of the model. We also evaluate the effectiveness of our features against the gold standard of “term frequency” and compare the usefulness of the proposed feature set with term frequency. The results of our proposed method are presented and compared with existing algorithms.</description><identifier>ISSN: 1380-7501</identifier><identifier>EISSN: 1573-7721</identifier><identifier>DOI: 10.1007/s11042-022-12657-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Computer Communication Networks ; Computer Science ; Data Structures and Information Theory ; Documents ; Entropy ; Keywords ; Multimedia ; Multimedia Information Systems ; Special Purpose and Application-Based Systems ; Text analysis</subject><ispartof>Multimedia tools and applications, 2022-11, Vol.81 (26), p.37747-37761</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-1ddcfcaa22e4c126a84e3c297ae6df7aa7e0d698c8e5ba7cd92a3e93314864183</citedby><cites>FETCH-LOGICAL-c249t-1ddcfcaa22e4c126a84e3c297ae6df7aa7e0d698c8e5ba7cd92a3e93314864183</cites><orcidid>0000-0002-1387-4191</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11042-022-12657-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11042-022-12657-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Rathi, R. N.</creatorcontrib><creatorcontrib>Mustafi, A.</creatorcontrib><title>Designing an efficient unigram keyword detector for documents using Relative Entropy</title><title>Multimedia tools and applications</title><addtitle>Multimed Tools Appl</addtitle><description>In this work we propose a statistical approach to identify unigram keywords for a document. We identify unigram keywords as features which effectively captures the importance of a word in a document and evaluates its potential to be a keyword. We make use of relative entropy, displacement and variance of terms in a document have been evaluated in the context of keyword identification. The proposed approach works on single documents without the requirement of any pre-training of the model. We also evaluate the effectiveness of our features against the gold standard of “term frequency” and compare the usefulness of the proposed feature set with term frequency. The results of our proposed method are presented and compared with existing algorithms.</description><subject>Algorithms</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Data Structures and Information Theory</subject><subject>Documents</subject><subject>Entropy</subject><subject>Keywords</subject><subject>Multimedia</subject><subject>Multimedia Information Systems</subject><subject>Special Purpose and Application-Based Systems</subject><subject>Text analysis</subject><issn>1380-7501</issn><issn>1573-7721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kE1LAzEQhoMoWKt_wFPAczRfu9k9Sq0fUBCknkNMJsvWNluTXW3_vakrePMwzByed2Z4ELpk9JpRqm4SY1RyQjknjJeFIrsjNGGFEkQpzo7zLCpKVEHZKTpLaUUpKwsuJ2h5B6ltQhsabAIG71vbQujxENommg1-h_1XFx120IPtu4h9LtfZYZOphId0SL7A2vTtJ-B56GO33Z-jE2_WCS5--xS93s-Xs0eyeH54mt0uiOWy7glzznprDOcgbX7bVBKE5bUyUDqvjFFAXVlXtoLizSjram4E1EIwWZWSVWKKrsa929h9DJB6veqGGPJJzRWruZBc0UzxkbKxSymC19vYbkzca0b1wZ4e7elsT__Y07scEmMoZTg0EP9W_5P6BtjNdHQ</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Rathi, R. N.</creator><creator>Mustafi, A.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-1387-4191</orcidid></search><sort><creationdate>20221101</creationdate><title>Designing an efficient unigram keyword detector for documents using Relative Entropy</title><author>Rathi, R. N. ; Mustafi, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-1ddcfcaa22e4c126a84e3c297ae6df7aa7e0d698c8e5ba7cd92a3e93314864183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Data Structures and Information Theory</topic><topic>Documents</topic><topic>Entropy</topic><topic>Keywords</topic><topic>Multimedia</topic><topic>Multimedia Information Systems</topic><topic>Special Purpose and Application-Based Systems</topic><topic>Text analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rathi, R. N.</creatorcontrib><creatorcontrib>Mustafi, A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Multimedia tools and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rathi, R. N.</au><au>Mustafi, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Designing an efficient unigram keyword detector for documents using Relative Entropy</atitle><jtitle>Multimedia tools and applications</jtitle><stitle>Multimed Tools Appl</stitle><date>2022-11-01</date><risdate>2022</risdate><volume>81</volume><issue>26</issue><spage>37747</spage><epage>37761</epage><pages>37747-37761</pages><issn>1380-7501</issn><eissn>1573-7721</eissn><abstract>In this work we propose a statistical approach to identify unigram keywords for a document. We identify unigram keywords as features which effectively captures the importance of a word in a document and evaluates its potential to be a keyword. We make use of relative entropy, displacement and variance of terms in a document have been evaluated in the context of keyword identification. The proposed approach works on single documents without the requirement of any pre-training of the model. We also evaluate the effectiveness of our features against the gold standard of “term frequency” and compare the usefulness of the proposed feature set with term frequency. The results of our proposed method are presented and compared with existing algorithms.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11042-022-12657-x</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-1387-4191</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1380-7501
ispartof Multimedia tools and applications, 2022-11, Vol.81 (26), p.37747-37761
issn 1380-7501
1573-7721
language eng
recordid cdi_proquest_journals_2719234270
source Springer Nature - Complete Springer Journals
subjects Algorithms
Computer Communication Networks
Computer Science
Data Structures and Information Theory
Documents
Entropy
Keywords
Multimedia
Multimedia Information Systems
Special Purpose and Application-Based Systems
Text analysis
title Designing an efficient unigram keyword detector for documents using Relative Entropy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T16%3A18%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Designing%20an%20efficient%20unigram%20keyword%20detector%20for%20documents%20using%20Relative%20Entropy&rft.jtitle=Multimedia%20tools%20and%20applications&rft.au=Rathi,%20R.%20N.&rft.date=2022-11-01&rft.volume=81&rft.issue=26&rft.spage=37747&rft.epage=37761&rft.pages=37747-37761&rft.issn=1380-7501&rft.eissn=1573-7721&rft_id=info:doi/10.1007/s11042-022-12657-x&rft_dat=%3Cproquest_cross%3E2719234270%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2719234270&rft_id=info:pmid/&rfr_iscdi=true