Effects of Ba(Mg1/3Ta2/3)O3 doping on phase structure, optical and electrical properties of (K0.5Na0.5)NbO3 transparent ferroelectric ceramics
This paper takes KNN ceramics as the research object, and introduces the second component of ABO 3 type perovskite structure into it. A series of (1- x )K 0.5 Na 0.5 NbO 3 - x Ba(Mg 1/3 Ta 2/3 )O 3 ( x = 0.02, 0.03, 0.04, 0.05, 0.06, 0.07) (KNN- x BMT) nanostructured ferroelectric transparent ceram...
Gespeichert in:
Veröffentlicht in: | Journal of materials science. Materials in electronics 2022-10, Vol.33 (28), p.22400-22409 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 22409 |
---|---|
container_issue | 28 |
container_start_page | 22400 |
container_title | Journal of materials science. Materials in electronics |
container_volume | 33 |
creator | Liu, Xiang Wu, Huangtao Shi, Shaoyang Wang, Hua Xu, Jiwen Yang, Ling Qiu, Wei |
description | This paper takes KNN ceramics as the research object, and introduces the second component of ABO
3
type perovskite structure into it. A series of (1-
x
)K
0.5
Na
0.5
NbO
3
-
x
Ba(Mg
1/3
Ta
2/3
)O
3
(
x
= 0.02, 0.03, 0.04, 0.05, 0.06, 0.07) (KNN-
x
BMT) nanostructured ferroelectric transparent ceramics were successfully synthesized by solid-phase reaction. The effects of BMT on the optical permeability, phase transition, microstructure and electrical properties of KNN ceramics were systematically studied. It is found that when the BMT content
x
= 0.05, the transmittance of the ceramic at 1100 nm wavelength reached 68%, and ceramic has the smallest grain size and a concentrated grain size distribution range. Compared with pure KNN ceramics, these nanostructured ceramics have better optical transmittance. The formation of pseudo-cubic phase in ceramics at
x
≥ 0.04 promotes the enhanced relaxation of ceramics, and the hysteresis loop becomes elongated. The maximum polarization (
P
m
) of the ceramics is reduced, and the energy storage efficiency (
η
) reaches a maximum of 65%. When the BMT content
x
is over 0.04, the two peaks in the dielectric temperature spectrum gradually merged with the increase of BMT content, and the phase transition temperature (
T
m
) shifted to low temperature. This shows that the BMT addition increases the relaxivity of the ceramics. |
doi_str_mv | 10.1007/s10854-022-09017-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2719231236</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2719231236</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1648-216277513943af45864577f3c28b57bd6b6b456544793e708f9ef86ecd5dc35f3</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWKsv4CrgpgWnzT2ZpZZ6wdpuKrgLmUxSp7QzYzJd-BI-s7FV3LnJIfB_3zn8AFxiNMIIyXHESHGWIUIylCMsM3UEephLmjFFXo9BD-VcZowTcgrOYlwjhASjqgc-p94720XYeHhrBs8rPKZLQ8Z0uKCwbNqqXsGmhu2biQ7GLuxstwvuGjZtV1mzgaYuodskQ9h_29C0LnSV2wsHT2jE5yY9w3mRfF0wdWxNcHUHvQuh-SWhdcFsKxvPwYk3m-gufmYfvNxNl5OHbLa4f5zczDKLBVMZwYJIyTHNGTWecSUYl9JTS1TBZVGKQhSMC86YzKmTSPnceSWcLXlpKfe0D64O3nTw-87FTq-bXajTSk0kzgnFhIqUIoeUDU2MwXndhmprwofGSH_3rg-969S73veuVYLoAYopXK9c-FP_Q30BVdODvA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2719231236</pqid></control><display><type>article</type><title>Effects of Ba(Mg1/3Ta2/3)O3 doping on phase structure, optical and electrical properties of (K0.5Na0.5)NbO3 transparent ferroelectric ceramics</title><source>SpringerLink Journals</source><creator>Liu, Xiang ; Wu, Huangtao ; Shi, Shaoyang ; Wang, Hua ; Xu, Jiwen ; Yang, Ling ; Qiu, Wei</creator><creatorcontrib>Liu, Xiang ; Wu, Huangtao ; Shi, Shaoyang ; Wang, Hua ; Xu, Jiwen ; Yang, Ling ; Qiu, Wei</creatorcontrib><description>This paper takes KNN ceramics as the research object, and introduces the second component of ABO
3
type perovskite structure into it. A series of (1-
x
)K
0.5
Na
0.5
NbO
3
-
x
Ba(Mg
1/3
Ta
2/3
)O
3
(
x
= 0.02, 0.03, 0.04, 0.05, 0.06, 0.07) (KNN-
x
BMT) nanostructured ferroelectric transparent ceramics were successfully synthesized by solid-phase reaction. The effects of BMT on the optical permeability, phase transition, microstructure and electrical properties of KNN ceramics were systematically studied. It is found that when the BMT content
x
= 0.05, the transmittance of the ceramic at 1100 nm wavelength reached 68%, and ceramic has the smallest grain size and a concentrated grain size distribution range. Compared with pure KNN ceramics, these nanostructured ceramics have better optical transmittance. The formation of pseudo-cubic phase in ceramics at
x
≥ 0.04 promotes the enhanced relaxation of ceramics, and the hysteresis loop becomes elongated. The maximum polarization (
P
m
) of the ceramics is reduced, and the energy storage efficiency (
η
) reaches a maximum of 65%. When the BMT content
x
is over 0.04, the two peaks in the dielectric temperature spectrum gradually merged with the increase of BMT content, and the phase transition temperature (
T
m
) shifted to low temperature. This shows that the BMT addition increases the relaxivity of the ceramics.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-022-09017-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Ceramics ; Characterization and Evaluation of Materials ; Chemical synthesis ; Chemistry and Materials Science ; Electrical properties ; Energy storage ; Ferroelectric materials ; Ferroelectricity ; Grain size ; Grain size distribution ; Hysteresis loops ; Low temperature ; Materials Science ; Nanostructure ; Optical and Electronic Materials ; Optical properties ; Perovskite structure ; Perovskites ; Phase transitions ; Solid phases ; Transition temperature ; Transmittance</subject><ispartof>Journal of materials science. Materials in electronics, 2022-10, Vol.33 (28), p.22400-22409</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1648-216277513943af45864577f3c28b57bd6b6b456544793e708f9ef86ecd5dc35f3</citedby><cites>FETCH-LOGICAL-c1648-216277513943af45864577f3c28b57bd6b6b456544793e708f9ef86ecd5dc35f3</cites><orcidid>0000-0003-0170-9719</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10854-022-09017-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10854-022-09017-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Liu, Xiang</creatorcontrib><creatorcontrib>Wu, Huangtao</creatorcontrib><creatorcontrib>Shi, Shaoyang</creatorcontrib><creatorcontrib>Wang, Hua</creatorcontrib><creatorcontrib>Xu, Jiwen</creatorcontrib><creatorcontrib>Yang, Ling</creatorcontrib><creatorcontrib>Qiu, Wei</creatorcontrib><title>Effects of Ba(Mg1/3Ta2/3)O3 doping on phase structure, optical and electrical properties of (K0.5Na0.5)NbO3 transparent ferroelectric ceramics</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>This paper takes KNN ceramics as the research object, and introduces the second component of ABO
3
type perovskite structure into it. A series of (1-
x
)K
0.5
Na
0.5
NbO
3
-
x
Ba(Mg
1/3
Ta
2/3
)O
3
(
x
= 0.02, 0.03, 0.04, 0.05, 0.06, 0.07) (KNN-
x
BMT) nanostructured ferroelectric transparent ceramics were successfully synthesized by solid-phase reaction. The effects of BMT on the optical permeability, phase transition, microstructure and electrical properties of KNN ceramics were systematically studied. It is found that when the BMT content
x
= 0.05, the transmittance of the ceramic at 1100 nm wavelength reached 68%, and ceramic has the smallest grain size and a concentrated grain size distribution range. Compared with pure KNN ceramics, these nanostructured ceramics have better optical transmittance. The formation of pseudo-cubic phase in ceramics at
x
≥ 0.04 promotes the enhanced relaxation of ceramics, and the hysteresis loop becomes elongated. The maximum polarization (
P
m
) of the ceramics is reduced, and the energy storage efficiency (
η
) reaches a maximum of 65%. When the BMT content
x
is over 0.04, the two peaks in the dielectric temperature spectrum gradually merged with the increase of BMT content, and the phase transition temperature (
T
m
) shifted to low temperature. This shows that the BMT addition increases the relaxivity of the ceramics.</description><subject>Ceramics</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical synthesis</subject><subject>Chemistry and Materials Science</subject><subject>Electrical properties</subject><subject>Energy storage</subject><subject>Ferroelectric materials</subject><subject>Ferroelectricity</subject><subject>Grain size</subject><subject>Grain size distribution</subject><subject>Hysteresis loops</subject><subject>Low temperature</subject><subject>Materials Science</subject><subject>Nanostructure</subject><subject>Optical and Electronic Materials</subject><subject>Optical properties</subject><subject>Perovskite structure</subject><subject>Perovskites</subject><subject>Phase transitions</subject><subject>Solid phases</subject><subject>Transition temperature</subject><subject>Transmittance</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kMtKAzEUhoMoWKsv4CrgpgWnzT2ZpZZ6wdpuKrgLmUxSp7QzYzJd-BI-s7FV3LnJIfB_3zn8AFxiNMIIyXHESHGWIUIylCMsM3UEephLmjFFXo9BD-VcZowTcgrOYlwjhASjqgc-p94720XYeHhrBs8rPKZLQ8Z0uKCwbNqqXsGmhu2biQ7GLuxstwvuGjZtV1mzgaYuodskQ9h_29C0LnSV2wsHT2jE5yY9w3mRfF0wdWxNcHUHvQuh-SWhdcFsKxvPwYk3m-gufmYfvNxNl5OHbLa4f5zczDKLBVMZwYJIyTHNGTWecSUYl9JTS1TBZVGKQhSMC86YzKmTSPnceSWcLXlpKfe0D64O3nTw-87FTq-bXajTSk0kzgnFhIqUIoeUDU2MwXndhmprwofGSH_3rg-969S73veuVYLoAYopXK9c-FP_Q30BVdODvA</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Liu, Xiang</creator><creator>Wu, Huangtao</creator><creator>Shi, Shaoyang</creator><creator>Wang, Hua</creator><creator>Xu, Jiwen</creator><creator>Yang, Ling</creator><creator>Qiu, Wei</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0003-0170-9719</orcidid></search><sort><creationdate>20221001</creationdate><title>Effects of Ba(Mg1/3Ta2/3)O3 doping on phase structure, optical and electrical properties of (K0.5Na0.5)NbO3 transparent ferroelectric ceramics</title><author>Liu, Xiang ; Wu, Huangtao ; Shi, Shaoyang ; Wang, Hua ; Xu, Jiwen ; Yang, Ling ; Qiu, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1648-216277513943af45864577f3c28b57bd6b6b456544793e708f9ef86ecd5dc35f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Ceramics</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical synthesis</topic><topic>Chemistry and Materials Science</topic><topic>Electrical properties</topic><topic>Energy storage</topic><topic>Ferroelectric materials</topic><topic>Ferroelectricity</topic><topic>Grain size</topic><topic>Grain size distribution</topic><topic>Hysteresis loops</topic><topic>Low temperature</topic><topic>Materials Science</topic><topic>Nanostructure</topic><topic>Optical and Electronic Materials</topic><topic>Optical properties</topic><topic>Perovskite structure</topic><topic>Perovskites</topic><topic>Phase transitions</topic><topic>Solid phases</topic><topic>Transition temperature</topic><topic>Transmittance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Xiang</creatorcontrib><creatorcontrib>Wu, Huangtao</creatorcontrib><creatorcontrib>Shi, Shaoyang</creatorcontrib><creatorcontrib>Wang, Hua</creatorcontrib><creatorcontrib>Xu, Jiwen</creatorcontrib><creatorcontrib>Yang, Ling</creatorcontrib><creatorcontrib>Qiu, Wei</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Xiang</au><au>Wu, Huangtao</au><au>Shi, Shaoyang</au><au>Wang, Hua</au><au>Xu, Jiwen</au><au>Yang, Ling</au><au>Qiu, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of Ba(Mg1/3Ta2/3)O3 doping on phase structure, optical and electrical properties of (K0.5Na0.5)NbO3 transparent ferroelectric ceramics</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>33</volume><issue>28</issue><spage>22400</spage><epage>22409</epage><pages>22400-22409</pages><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>This paper takes KNN ceramics as the research object, and introduces the second component of ABO
3
type perovskite structure into it. A series of (1-
x
)K
0.5
Na
0.5
NbO
3
-
x
Ba(Mg
1/3
Ta
2/3
)O
3
(
x
= 0.02, 0.03, 0.04, 0.05, 0.06, 0.07) (KNN-
x
BMT) nanostructured ferroelectric transparent ceramics were successfully synthesized by solid-phase reaction. The effects of BMT on the optical permeability, phase transition, microstructure and electrical properties of KNN ceramics were systematically studied. It is found that when the BMT content
x
= 0.05, the transmittance of the ceramic at 1100 nm wavelength reached 68%, and ceramic has the smallest grain size and a concentrated grain size distribution range. Compared with pure KNN ceramics, these nanostructured ceramics have better optical transmittance. The formation of pseudo-cubic phase in ceramics at
x
≥ 0.04 promotes the enhanced relaxation of ceramics, and the hysteresis loop becomes elongated. The maximum polarization (
P
m
) of the ceramics is reduced, and the energy storage efficiency (
η
) reaches a maximum of 65%. When the BMT content
x
is over 0.04, the two peaks in the dielectric temperature spectrum gradually merged with the increase of BMT content, and the phase transition temperature (
T
m
) shifted to low temperature. This shows that the BMT addition increases the relaxivity of the ceramics.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-022-09017-8</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-0170-9719</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4522 |
ispartof | Journal of materials science. Materials in electronics, 2022-10, Vol.33 (28), p.22400-22409 |
issn | 0957-4522 1573-482X |
language | eng |
recordid | cdi_proquest_journals_2719231236 |
source | SpringerLink Journals |
subjects | Ceramics Characterization and Evaluation of Materials Chemical synthesis Chemistry and Materials Science Electrical properties Energy storage Ferroelectric materials Ferroelectricity Grain size Grain size distribution Hysteresis loops Low temperature Materials Science Nanostructure Optical and Electronic Materials Optical properties Perovskite structure Perovskites Phase transitions Solid phases Transition temperature Transmittance |
title | Effects of Ba(Mg1/3Ta2/3)O3 doping on phase structure, optical and electrical properties of (K0.5Na0.5)NbO3 transparent ferroelectric ceramics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T08%3A44%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20Ba(Mg1/3Ta2/3)O3%20doping%20on%20phase%20structure,%20optical%20and%20electrical%20properties%20of%20(K0.5Na0.5)NbO3%20transparent%20ferroelectric%20ceramics&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Liu,%20Xiang&rft.date=2022-10-01&rft.volume=33&rft.issue=28&rft.spage=22400&rft.epage=22409&rft.pages=22400-22409&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-022-09017-8&rft_dat=%3Cproquest_cross%3E2719231236%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2719231236&rft_id=info:pmid/&rfr_iscdi=true |