Synthetic strategies and performance of catalysts for pyrolytic production of alternative aviation fuels using non-edible lipids: A critical review

Non-edible lipids are an alternative source of liquid hydrocarbon fuels, particularly aviation fuels. As a transformation pathway, the catalytic pyrolysis of lipids can remove oxygen atoms and modify molecular structures via carbon chain cracking and aromatisation. However, this pathway has not yet...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied catalysis. A, General General, 2022-08, Vol.643, p.118769, Article 118769
Hauptverfasser: Wang, Xin, Wang, Hui, Jin, Xiaodong, Wang, Fumei, Shen, Boxiong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 118769
container_title Applied catalysis. A, General
container_volume 643
creator Wang, Xin
Wang, Hui
Jin, Xiaodong
Wang, Fumei
Shen, Boxiong
description Non-edible lipids are an alternative source of liquid hydrocarbon fuels, particularly aviation fuels. As a transformation pathway, the catalytic pyrolysis of lipids can remove oxygen atoms and modify molecular structures via carbon chain cracking and aromatisation. However, this pathway has not yet been certified for the production of alternative aviation fuels. Therefore, a detailed review of various heterogeneous catalysts for the conversion of lipids into hydrocarbon fuels with molecular weights and structures suitable for use in aviation is presented herein, with a focus on aspects such as their physical and chemical properties, pore distributions and structures, active sites, key functions, catalytic performance, and pyrolysis mechanisms. Metal oxides can effectively remove oxygen atoms, whereas zeolites can achieve long-carbon-chain cracking to yield desirable gasoline-, kerosene-, or diesel-range fuels. Moreover, zeolites typically permit aromatisation, which yields the aromatic hydrocarbons required for liquid fuels. Modification of the pore structures of zeolites to yield hierarchical pores can improve the production of C8–C16-range liquid fuels to maximise the bio-kerosene yield. Therefore, composite catalysts (metal oxides supported on zeolites with hierarchical pores) can be effective for molecular-level structural modification in the pyrolytic production of alternative aviation fuels using lipids. However, rapid deactivation due to coking, poisoning, and sintering hinder the operation of these catalysts. Coking, which is predominantly responsible for pyrolysis catalyst deactivation, should be targeted in future research on novel catalysts. The synthetic strategy of catalysts and the mitigation of their issues are critical to the design of novel catalytic pyrolysis systems for the efficient cracking of triglyceride-rich feedstock to yield alternative aviation fuels. [Display omitted] •Synthetic strategy of catalysts used in catalytic pyrolysis of lipid was reviewed.•Metal oxides supported in zeolites remove oxygen and crack carbon chain.•Aromatization is realized by porous zeolites to produce aromatic hydrocarbons.•Carbon chain length can be modified by ratio of micropores and mesopores.•Microalgal lipid is an alternative feedstock for aviation fuel production.
doi_str_mv 10.1016/j.apcata.2022.118769
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2719032765</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0926860X22002927</els_id><sourcerecordid>2719032765</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-2b72accbf616938724804527472279ac1cf1aaee13cacc6a36513eb159a511273</originalsourceid><addsrcrecordid>eNp9kM1q3DAUhUVpodMkb9CFoGtP9WNL4y4CIfQnEMgiKWQn7sjXqQbFciR5gp8jLxw57jqrC4dzDvd8hHzlbMsZV98PWxgtZNgKJsSW851W7QeyKVdWcqebj2TDWqGqnWL3n8mXlA6MMVG3zYa83M5D_ofZWZpyhIwPDhOFoaMjxj7ERxgs0tDTpd_PKSdaVDrOMfh5SY0xdJPNLgyLC3zGOEB2R6RwdPCm9xP6RKfkhgc6hKHCzu09Uu9G16Uf9ILa6EoVeBrx6PD5lHzqwSc8-39PyN9fP-8u_1TXN7-vLi-uKytlnSux1wKs3feKq7bMFPWO1Y3QtRZCt2C57TkAIpe22BRI1XCJe9600HAutDwh39besuFpwpTNIUzle5-M0LxlUmjVFFe9umwMKUXszRjdI8TZcGYW_OZgVvxmwW9W_CV2vsbK9mVVNMk6LDA7F9Fm0wX3fsErO26TMw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2719032765</pqid></control><display><type>article</type><title>Synthetic strategies and performance of catalysts for pyrolytic production of alternative aviation fuels using non-edible lipids: A critical review</title><source>Elsevier ScienceDirect Journals</source><creator>Wang, Xin ; Wang, Hui ; Jin, Xiaodong ; Wang, Fumei ; Shen, Boxiong</creator><creatorcontrib>Wang, Xin ; Wang, Hui ; Jin, Xiaodong ; Wang, Fumei ; Shen, Boxiong</creatorcontrib><description>Non-edible lipids are an alternative source of liquid hydrocarbon fuels, particularly aviation fuels. As a transformation pathway, the catalytic pyrolysis of lipids can remove oxygen atoms and modify molecular structures via carbon chain cracking and aromatisation. However, this pathway has not yet been certified for the production of alternative aviation fuels. Therefore, a detailed review of various heterogeneous catalysts for the conversion of lipids into hydrocarbon fuels with molecular weights and structures suitable for use in aviation is presented herein, with a focus on aspects such as their physical and chemical properties, pore distributions and structures, active sites, key functions, catalytic performance, and pyrolysis mechanisms. Metal oxides can effectively remove oxygen atoms, whereas zeolites can achieve long-carbon-chain cracking to yield desirable gasoline-, kerosene-, or diesel-range fuels. Moreover, zeolites typically permit aromatisation, which yields the aromatic hydrocarbons required for liquid fuels. Modification of the pore structures of zeolites to yield hierarchical pores can improve the production of C8–C16-range liquid fuels to maximise the bio-kerosene yield. Therefore, composite catalysts (metal oxides supported on zeolites with hierarchical pores) can be effective for molecular-level structural modification in the pyrolytic production of alternative aviation fuels using lipids. However, rapid deactivation due to coking, poisoning, and sintering hinder the operation of these catalysts. Coking, which is predominantly responsible for pyrolysis catalyst deactivation, should be targeted in future research on novel catalysts. The synthetic strategy of catalysts and the mitigation of their issues are critical to the design of novel catalytic pyrolysis systems for the efficient cracking of triglyceride-rich feedstock to yield alternative aviation fuels. [Display omitted] •Synthetic strategy of catalysts used in catalytic pyrolysis of lipid was reviewed.•Metal oxides supported in zeolites remove oxygen and crack carbon chain.•Aromatization is realized by porous zeolites to produce aromatic hydrocarbons.•Carbon chain length can be modified by ratio of micropores and mesopores.•Microalgal lipid is an alternative feedstock for aviation fuel production.</description><identifier>ISSN: 0926-860X</identifier><identifier>EISSN: 1873-3875</identifier><identifier>DOI: 10.1016/j.apcata.2022.118769</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Alternative aviation fuels ; Aromatic hydrocarbons ; Aviation fuel ; Carbon ; Catalysts ; Catalytic pyrolysis ; Chemical properties ; Coking ; Composite catalysts ; Cracking (chemical engineering) ; Deactivation ; Diesel fuels ; Hydrocarbon fuels ; Hydrocarbons ; Kerosene ; Lipids ; Liquid fuels ; Liquid hydrocarbons ; Metal oxides ; Microalgae ; Molecular chains ; Molecular structure ; Non-edible lipids ; Oxygen atoms ; Pyrolysis ; Sintering (powder metallurgy) ; Triglycerides ; Zeolites</subject><ispartof>Applied catalysis. A, General, 2022-08, Vol.643, p.118769, Article 118769</ispartof><rights>2022 Elsevier B.V.</rights><rights>Copyright Elsevier Science SA Aug 5, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-2b72accbf616938724804527472279ac1cf1aaee13cacc6a36513eb159a511273</citedby><cites>FETCH-LOGICAL-c334t-2b72accbf616938724804527472279ac1cf1aaee13cacc6a36513eb159a511273</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0926860X22002927$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Wang, Xin</creatorcontrib><creatorcontrib>Wang, Hui</creatorcontrib><creatorcontrib>Jin, Xiaodong</creatorcontrib><creatorcontrib>Wang, Fumei</creatorcontrib><creatorcontrib>Shen, Boxiong</creatorcontrib><title>Synthetic strategies and performance of catalysts for pyrolytic production of alternative aviation fuels using non-edible lipids: A critical review</title><title>Applied catalysis. A, General</title><description>Non-edible lipids are an alternative source of liquid hydrocarbon fuels, particularly aviation fuels. As a transformation pathway, the catalytic pyrolysis of lipids can remove oxygen atoms and modify molecular structures via carbon chain cracking and aromatisation. However, this pathway has not yet been certified for the production of alternative aviation fuels. Therefore, a detailed review of various heterogeneous catalysts for the conversion of lipids into hydrocarbon fuels with molecular weights and structures suitable for use in aviation is presented herein, with a focus on aspects such as their physical and chemical properties, pore distributions and structures, active sites, key functions, catalytic performance, and pyrolysis mechanisms. Metal oxides can effectively remove oxygen atoms, whereas zeolites can achieve long-carbon-chain cracking to yield desirable gasoline-, kerosene-, or diesel-range fuels. Moreover, zeolites typically permit aromatisation, which yields the aromatic hydrocarbons required for liquid fuels. Modification of the pore structures of zeolites to yield hierarchical pores can improve the production of C8–C16-range liquid fuels to maximise the bio-kerosene yield. Therefore, composite catalysts (metal oxides supported on zeolites with hierarchical pores) can be effective for molecular-level structural modification in the pyrolytic production of alternative aviation fuels using lipids. However, rapid deactivation due to coking, poisoning, and sintering hinder the operation of these catalysts. Coking, which is predominantly responsible for pyrolysis catalyst deactivation, should be targeted in future research on novel catalysts. The synthetic strategy of catalysts and the mitigation of their issues are critical to the design of novel catalytic pyrolysis systems for the efficient cracking of triglyceride-rich feedstock to yield alternative aviation fuels. [Display omitted] •Synthetic strategy of catalysts used in catalytic pyrolysis of lipid was reviewed.•Metal oxides supported in zeolites remove oxygen and crack carbon chain.•Aromatization is realized by porous zeolites to produce aromatic hydrocarbons.•Carbon chain length can be modified by ratio of micropores and mesopores.•Microalgal lipid is an alternative feedstock for aviation fuel production.</description><subject>Alternative aviation fuels</subject><subject>Aromatic hydrocarbons</subject><subject>Aviation fuel</subject><subject>Carbon</subject><subject>Catalysts</subject><subject>Catalytic pyrolysis</subject><subject>Chemical properties</subject><subject>Coking</subject><subject>Composite catalysts</subject><subject>Cracking (chemical engineering)</subject><subject>Deactivation</subject><subject>Diesel fuels</subject><subject>Hydrocarbon fuels</subject><subject>Hydrocarbons</subject><subject>Kerosene</subject><subject>Lipids</subject><subject>Liquid fuels</subject><subject>Liquid hydrocarbons</subject><subject>Metal oxides</subject><subject>Microalgae</subject><subject>Molecular chains</subject><subject>Molecular structure</subject><subject>Non-edible lipids</subject><subject>Oxygen atoms</subject><subject>Pyrolysis</subject><subject>Sintering (powder metallurgy)</subject><subject>Triglycerides</subject><subject>Zeolites</subject><issn>0926-860X</issn><issn>1873-3875</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kM1q3DAUhUVpodMkb9CFoGtP9WNL4y4CIfQnEMgiKWQn7sjXqQbFciR5gp8jLxw57jqrC4dzDvd8hHzlbMsZV98PWxgtZNgKJsSW851W7QeyKVdWcqebj2TDWqGqnWL3n8mXlA6MMVG3zYa83M5D_ofZWZpyhIwPDhOFoaMjxj7ERxgs0tDTpd_PKSdaVDrOMfh5SY0xdJPNLgyLC3zGOEB2R6RwdPCm9xP6RKfkhgc6hKHCzu09Uu9G16Uf9ILa6EoVeBrx6PD5lHzqwSc8-39PyN9fP-8u_1TXN7-vLi-uKytlnSux1wKs3feKq7bMFPWO1Y3QtRZCt2C57TkAIpe22BRI1XCJe9600HAutDwh39besuFpwpTNIUzle5-M0LxlUmjVFFe9umwMKUXszRjdI8TZcGYW_OZgVvxmwW9W_CV2vsbK9mVVNMk6LDA7F9Fm0wX3fsErO26TMw</recordid><startdate>20220805</startdate><enddate>20220805</enddate><creator>Wang, Xin</creator><creator>Wang, Hui</creator><creator>Jin, Xiaodong</creator><creator>Wang, Fumei</creator><creator>Shen, Boxiong</creator><general>Elsevier B.V</general><general>Elsevier Science SA</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20220805</creationdate><title>Synthetic strategies and performance of catalysts for pyrolytic production of alternative aviation fuels using non-edible lipids: A critical review</title><author>Wang, Xin ; Wang, Hui ; Jin, Xiaodong ; Wang, Fumei ; Shen, Boxiong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-2b72accbf616938724804527472279ac1cf1aaee13cacc6a36513eb159a511273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Alternative aviation fuels</topic><topic>Aromatic hydrocarbons</topic><topic>Aviation fuel</topic><topic>Carbon</topic><topic>Catalysts</topic><topic>Catalytic pyrolysis</topic><topic>Chemical properties</topic><topic>Coking</topic><topic>Composite catalysts</topic><topic>Cracking (chemical engineering)</topic><topic>Deactivation</topic><topic>Diesel fuels</topic><topic>Hydrocarbon fuels</topic><topic>Hydrocarbons</topic><topic>Kerosene</topic><topic>Lipids</topic><topic>Liquid fuels</topic><topic>Liquid hydrocarbons</topic><topic>Metal oxides</topic><topic>Microalgae</topic><topic>Molecular chains</topic><topic>Molecular structure</topic><topic>Non-edible lipids</topic><topic>Oxygen atoms</topic><topic>Pyrolysis</topic><topic>Sintering (powder metallurgy)</topic><topic>Triglycerides</topic><topic>Zeolites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Xin</creatorcontrib><creatorcontrib>Wang, Hui</creatorcontrib><creatorcontrib>Jin, Xiaodong</creatorcontrib><creatorcontrib>Wang, Fumei</creatorcontrib><creatorcontrib>Shen, Boxiong</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied catalysis. A, General</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Xin</au><au>Wang, Hui</au><au>Jin, Xiaodong</au><au>Wang, Fumei</au><au>Shen, Boxiong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthetic strategies and performance of catalysts for pyrolytic production of alternative aviation fuels using non-edible lipids: A critical review</atitle><jtitle>Applied catalysis. A, General</jtitle><date>2022-08-05</date><risdate>2022</risdate><volume>643</volume><spage>118769</spage><pages>118769-</pages><artnum>118769</artnum><issn>0926-860X</issn><eissn>1873-3875</eissn><abstract>Non-edible lipids are an alternative source of liquid hydrocarbon fuels, particularly aviation fuels. As a transformation pathway, the catalytic pyrolysis of lipids can remove oxygen atoms and modify molecular structures via carbon chain cracking and aromatisation. However, this pathway has not yet been certified for the production of alternative aviation fuels. Therefore, a detailed review of various heterogeneous catalysts for the conversion of lipids into hydrocarbon fuels with molecular weights and structures suitable for use in aviation is presented herein, with a focus on aspects such as their physical and chemical properties, pore distributions and structures, active sites, key functions, catalytic performance, and pyrolysis mechanisms. Metal oxides can effectively remove oxygen atoms, whereas zeolites can achieve long-carbon-chain cracking to yield desirable gasoline-, kerosene-, or diesel-range fuels. Moreover, zeolites typically permit aromatisation, which yields the aromatic hydrocarbons required for liquid fuels. Modification of the pore structures of zeolites to yield hierarchical pores can improve the production of C8–C16-range liquid fuels to maximise the bio-kerosene yield. Therefore, composite catalysts (metal oxides supported on zeolites with hierarchical pores) can be effective for molecular-level structural modification in the pyrolytic production of alternative aviation fuels using lipids. However, rapid deactivation due to coking, poisoning, and sintering hinder the operation of these catalysts. Coking, which is predominantly responsible for pyrolysis catalyst deactivation, should be targeted in future research on novel catalysts. The synthetic strategy of catalysts and the mitigation of their issues are critical to the design of novel catalytic pyrolysis systems for the efficient cracking of triglyceride-rich feedstock to yield alternative aviation fuels. [Display omitted] •Synthetic strategy of catalysts used in catalytic pyrolysis of lipid was reviewed.•Metal oxides supported in zeolites remove oxygen and crack carbon chain.•Aromatization is realized by porous zeolites to produce aromatic hydrocarbons.•Carbon chain length can be modified by ratio of micropores and mesopores.•Microalgal lipid is an alternative feedstock for aviation fuel production.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.apcata.2022.118769</doi></addata></record>
fulltext fulltext
identifier ISSN: 0926-860X
ispartof Applied catalysis. A, General, 2022-08, Vol.643, p.118769, Article 118769
issn 0926-860X
1873-3875
language eng
recordid cdi_proquest_journals_2719032765
source Elsevier ScienceDirect Journals
subjects Alternative aviation fuels
Aromatic hydrocarbons
Aviation fuel
Carbon
Catalysts
Catalytic pyrolysis
Chemical properties
Coking
Composite catalysts
Cracking (chemical engineering)
Deactivation
Diesel fuels
Hydrocarbon fuels
Hydrocarbons
Kerosene
Lipids
Liquid fuels
Liquid hydrocarbons
Metal oxides
Microalgae
Molecular chains
Molecular structure
Non-edible lipids
Oxygen atoms
Pyrolysis
Sintering (powder metallurgy)
Triglycerides
Zeolites
title Synthetic strategies and performance of catalysts for pyrolytic production of alternative aviation fuels using non-edible lipids: A critical review
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T21%3A40%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthetic%20strategies%20and%20performance%20of%20catalysts%20for%20pyrolytic%20production%20of%20alternative%20aviation%20fuels%20using%20non-edible%20lipids:%20A%20critical%20review&rft.jtitle=Applied%20catalysis.%20A,%20General&rft.au=Wang,%20Xin&rft.date=2022-08-05&rft.volume=643&rft.spage=118769&rft.pages=118769-&rft.artnum=118769&rft.issn=0926-860X&rft.eissn=1873-3875&rft_id=info:doi/10.1016/j.apcata.2022.118769&rft_dat=%3Cproquest_cross%3E2719032765%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2719032765&rft_id=info:pmid/&rft_els_id=S0926860X22002927&rfr_iscdi=true