On the relationship between turbine thrust and near-wake velocity and vorticity

Vortical impulse theory is used to investigate the relationship between turbine thrust and the near-wake velocity and vorticity fields. Three different hypotheses regarding the near-wake structure allow the derivation of novel expressions for the thrust on a steadily rotating wind turbine, and these...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 2022-10, Vol.949, Article A24
Hauptverfasser: Limacher, Eric J., Ding, Liuyang, Piqué, Alexander, Smits, Alexander J., Hultmark, Marcus
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Journal of fluid mechanics
container_volume 949
creator Limacher, Eric J.
Ding, Liuyang
Piqué, Alexander
Smits, Alexander J.
Hultmark, Marcus
description Vortical impulse theory is used to investigate the relationship between turbine thrust and the near-wake velocity and vorticity fields. Three different hypotheses regarding the near-wake structure allow the derivation of novel expressions for the thrust on a steadily rotating wind turbine, and these are tested using stereoscopic particle-image velocimetry (PIV) data acquired just behind a rotor in a water channel. When one assumes that vortex lines and streamlines are aligned in a rotor-fixed frame of reference, one obtains a PIV-based thrust estimate that fails even to capture the trend of the directly measured thrust, and this failure is attributed to an implicit assumption that most of the generated thrust does useful work. When one neglects the axial gradients of radial velocity, the PIV-based thrust estimate captures the measured thrust trend, but underpredicts its magnitude by approximately $33\,\%$. The third and most promising physical proposition treats the trailing vortices as purely ‘rolling’ structures that exhibit zero-strain rate in their cores, with the corresponding thrust estimates in close agreement with direct thrust measurements. This best-performing expression appears as a correction to the classical thrust expression from momentum theory, possessing additional squared-velocity terms that can account for the high-thrust regime of turbine operation that is typically addressed empirically.
doi_str_mv 10.1017/jfm.2022.722
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2718831898</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2022_722</cupid><sourcerecordid>2718831898</sourcerecordid><originalsourceid>FETCH-LOGICAL-c302t-55bdc9aee8a7cf4011b164565529bee55700fb9b1e4528ce0a0c632cc77949c53</originalsourceid><addsrcrecordid>eNptkE9PwzAMxSMEEmNw4wNU4kqLkzZNc0QT_6RJu8A5SjKXZWztSNJN-_ZkbBIXTpaff362HiG3FAoKVDws23XBgLFCMHZGRrSqZS7qip-TESQ5p5TBJbkKYQlAS5BiRGazLosLzDyudHR9FxZukxmMO8Q0GLxxHSbADyFmuptnHWqf7_QXZltc9dbF_a-87X10h-6aXLR6FfDmVMfk4_npffKaT2cvb5PHaW5LYDHn3Myt1IiNFratgFJD06M150waRM4FQGukoVhx1lgEDbYumbVCyEpaXo7J3dF34_vvAUNUy37wXTqpmKBNU9JGNom6P1LW9yF4bNXGu7X2e0VBHSJTKTJ1iEylyBJenHC9Nt7NP_HP9d-FHyMWblg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2718831898</pqid></control><display><type>article</type><title>On the relationship between turbine thrust and near-wake velocity and vorticity</title><source>Cambridge University Press Journals Complete</source><creator>Limacher, Eric J. ; Ding, Liuyang ; Piqué, Alexander ; Smits, Alexander J. ; Hultmark, Marcus</creator><creatorcontrib>Limacher, Eric J. ; Ding, Liuyang ; Piqué, Alexander ; Smits, Alexander J. ; Hultmark, Marcus</creatorcontrib><description>Vortical impulse theory is used to investigate the relationship between turbine thrust and the near-wake velocity and vorticity fields. Three different hypotheses regarding the near-wake structure allow the derivation of novel expressions for the thrust on a steadily rotating wind turbine, and these are tested using stereoscopic particle-image velocimetry (PIV) data acquired just behind a rotor in a water channel. When one assumes that vortex lines and streamlines are aligned in a rotor-fixed frame of reference, one obtains a PIV-based thrust estimate that fails even to capture the trend of the directly measured thrust, and this failure is attributed to an implicit assumption that most of the generated thrust does useful work. When one neglects the axial gradients of radial velocity, the PIV-based thrust estimate captures the measured thrust trend, but underpredicts its magnitude by approximately $33\,\%$. The third and most promising physical proposition treats the trailing vortices as purely ‘rolling’ structures that exhibit zero-strain rate in their cores, with the corresponding thrust estimates in close agreement with direct thrust measurements. This best-performing expression appears as a correction to the classical thrust expression from momentum theory, possessing additional squared-velocity terms that can account for the high-thrust regime of turbine operation that is typically addressed empirically.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2022.722</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Aerodynamics ; Data acquisition ; Image acquisition ; JFM Papers ; Momentum ; Momentum theory ; Particle image velocimetry ; Radial velocity ; Rotors ; Strain rate ; Streamlines ; Thrust ; Trailing vortices ; Turbine engines ; Turbines ; Velocity ; Vorticity ; Wind power ; Wind turbines</subject><ispartof>Journal of fluid mechanics, 2022-10, Vol.949, Article A24</ispartof><rights>The Author(s), 2022. Published by Cambridge University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c302t-55bdc9aee8a7cf4011b164565529bee55700fb9b1e4528ce0a0c632cc77949c53</citedby><cites>FETCH-LOGICAL-c302t-55bdc9aee8a7cf4011b164565529bee55700fb9b1e4528ce0a0c632cc77949c53</cites><orcidid>0000-0003-4282-3198 ; 0000-0002-1391-6208 ; 0000-0002-3883-8648 ; 0000-0002-3046-2551</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112022007224/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27924,27925,55628</link.rule.ids></links><search><creatorcontrib>Limacher, Eric J.</creatorcontrib><creatorcontrib>Ding, Liuyang</creatorcontrib><creatorcontrib>Piqué, Alexander</creatorcontrib><creatorcontrib>Smits, Alexander J.</creatorcontrib><creatorcontrib>Hultmark, Marcus</creatorcontrib><title>On the relationship between turbine thrust and near-wake velocity and vorticity</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>Vortical impulse theory is used to investigate the relationship between turbine thrust and the near-wake velocity and vorticity fields. Three different hypotheses regarding the near-wake structure allow the derivation of novel expressions for the thrust on a steadily rotating wind turbine, and these are tested using stereoscopic particle-image velocimetry (PIV) data acquired just behind a rotor in a water channel. When one assumes that vortex lines and streamlines are aligned in a rotor-fixed frame of reference, one obtains a PIV-based thrust estimate that fails even to capture the trend of the directly measured thrust, and this failure is attributed to an implicit assumption that most of the generated thrust does useful work. When one neglects the axial gradients of radial velocity, the PIV-based thrust estimate captures the measured thrust trend, but underpredicts its magnitude by approximately $33\,\%$. The third and most promising physical proposition treats the trailing vortices as purely ‘rolling’ structures that exhibit zero-strain rate in their cores, with the corresponding thrust estimates in close agreement with direct thrust measurements. This best-performing expression appears as a correction to the classical thrust expression from momentum theory, possessing additional squared-velocity terms that can account for the high-thrust regime of turbine operation that is typically addressed empirically.</description><subject>Aerodynamics</subject><subject>Data acquisition</subject><subject>Image acquisition</subject><subject>JFM Papers</subject><subject>Momentum</subject><subject>Momentum theory</subject><subject>Particle image velocimetry</subject><subject>Radial velocity</subject><subject>Rotors</subject><subject>Strain rate</subject><subject>Streamlines</subject><subject>Thrust</subject><subject>Trailing vortices</subject><subject>Turbine engines</subject><subject>Turbines</subject><subject>Velocity</subject><subject>Vorticity</subject><subject>Wind power</subject><subject>Wind turbines</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkE9PwzAMxSMEEmNw4wNU4kqLkzZNc0QT_6RJu8A5SjKXZWztSNJN-_ZkbBIXTpaff362HiG3FAoKVDws23XBgLFCMHZGRrSqZS7qip-TESQ5p5TBJbkKYQlAS5BiRGazLosLzDyudHR9FxZukxmMO8Q0GLxxHSbADyFmuptnHWqf7_QXZltc9dbF_a-87X10h-6aXLR6FfDmVMfk4_npffKaT2cvb5PHaW5LYDHn3Myt1IiNFratgFJD06M150waRM4FQGukoVhx1lgEDbYumbVCyEpaXo7J3dF34_vvAUNUy37wXTqpmKBNU9JGNom6P1LW9yF4bNXGu7X2e0VBHSJTKTJ1iEylyBJenHC9Nt7NP_HP9d-FHyMWblg</recordid><startdate>20221025</startdate><enddate>20221025</enddate><creator>Limacher, Eric J.</creator><creator>Ding, Liuyang</creator><creator>Piqué, Alexander</creator><creator>Smits, Alexander J.</creator><creator>Hultmark, Marcus</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0003-4282-3198</orcidid><orcidid>https://orcid.org/0000-0002-1391-6208</orcidid><orcidid>https://orcid.org/0000-0002-3883-8648</orcidid><orcidid>https://orcid.org/0000-0002-3046-2551</orcidid></search><sort><creationdate>20221025</creationdate><title>On the relationship between turbine thrust and near-wake velocity and vorticity</title><author>Limacher, Eric J. ; Ding, Liuyang ; Piqué, Alexander ; Smits, Alexander J. ; Hultmark, Marcus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c302t-55bdc9aee8a7cf4011b164565529bee55700fb9b1e4528ce0a0c632cc77949c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aerodynamics</topic><topic>Data acquisition</topic><topic>Image acquisition</topic><topic>JFM Papers</topic><topic>Momentum</topic><topic>Momentum theory</topic><topic>Particle image velocimetry</topic><topic>Radial velocity</topic><topic>Rotors</topic><topic>Strain rate</topic><topic>Streamlines</topic><topic>Thrust</topic><topic>Trailing vortices</topic><topic>Turbine engines</topic><topic>Turbines</topic><topic>Velocity</topic><topic>Vorticity</topic><topic>Wind power</topic><topic>Wind turbines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Limacher, Eric J.</creatorcontrib><creatorcontrib>Ding, Liuyang</creatorcontrib><creatorcontrib>Piqué, Alexander</creatorcontrib><creatorcontrib>Smits, Alexander J.</creatorcontrib><creatorcontrib>Hultmark, Marcus</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Limacher, Eric J.</au><au>Ding, Liuyang</au><au>Piqué, Alexander</au><au>Smits, Alexander J.</au><au>Hultmark, Marcus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the relationship between turbine thrust and near-wake velocity and vorticity</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2022-10-25</date><risdate>2022</risdate><volume>949</volume><artnum>A24</artnum><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>Vortical impulse theory is used to investigate the relationship between turbine thrust and the near-wake velocity and vorticity fields. Three different hypotheses regarding the near-wake structure allow the derivation of novel expressions for the thrust on a steadily rotating wind turbine, and these are tested using stereoscopic particle-image velocimetry (PIV) data acquired just behind a rotor in a water channel. When one assumes that vortex lines and streamlines are aligned in a rotor-fixed frame of reference, one obtains a PIV-based thrust estimate that fails even to capture the trend of the directly measured thrust, and this failure is attributed to an implicit assumption that most of the generated thrust does useful work. When one neglects the axial gradients of radial velocity, the PIV-based thrust estimate captures the measured thrust trend, but underpredicts its magnitude by approximately $33\,\%$. The third and most promising physical proposition treats the trailing vortices as purely ‘rolling’ structures that exhibit zero-strain rate in their cores, with the corresponding thrust estimates in close agreement with direct thrust measurements. This best-performing expression appears as a correction to the classical thrust expression from momentum theory, possessing additional squared-velocity terms that can account for the high-thrust regime of turbine operation that is typically addressed empirically.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2022.722</doi><tpages>28</tpages><orcidid>https://orcid.org/0000-0003-4282-3198</orcidid><orcidid>https://orcid.org/0000-0002-1391-6208</orcidid><orcidid>https://orcid.org/0000-0002-3883-8648</orcidid><orcidid>https://orcid.org/0000-0002-3046-2551</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 2022-10, Vol.949, Article A24
issn 0022-1120
1469-7645
language eng
recordid cdi_proquest_journals_2718831898
source Cambridge University Press Journals Complete
subjects Aerodynamics
Data acquisition
Image acquisition
JFM Papers
Momentum
Momentum theory
Particle image velocimetry
Radial velocity
Rotors
Strain rate
Streamlines
Thrust
Trailing vortices
Turbine engines
Turbines
Velocity
Vorticity
Wind power
Wind turbines
title On the relationship between turbine thrust and near-wake velocity and vorticity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T20%3A38%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20relationship%20between%20turbine%20thrust%20and%20near-wake%20velocity%20and%20vorticity&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Limacher,%20Eric%20J.&rft.date=2022-10-25&rft.volume=949&rft.artnum=A24&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2022.722&rft_dat=%3Cproquest_cross%3E2718831898%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2718831898&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2022_722&rfr_iscdi=true