Experimental Validation of State of Charge Estimation by Extended Kalman Filter and Modified Coulomb Counting

The operation of batteries in energy storage systems (SAE) is controlled by the battery management system (BMS). Within the scope of research related to the functions of the BMS, there is attention to the methods of estimating the state of charge (SOC) that use state estimators. Among the estimators...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Revista IEEE América Latina 2022-11, Vol.20 (11), p.2395-2403
Hauptverfasser: Ando Junior, Oswaldo Hideo, Sylvestrin, Giovane Ronei, Scherer, Helton Fernando
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2403
container_issue 11
container_start_page 2395
container_title Revista IEEE América Latina
container_volume 20
creator Ando Junior, Oswaldo Hideo
Sylvestrin, Giovane Ronei
Scherer, Helton Fernando
description The operation of batteries in energy storage systems (SAE) is controlled by the battery management system (BMS). Within the scope of research related to the functions of the BMS, there is attention to the methods of estimating the state of charge (SOC) that use state estimators. Among the estimators, there is the algorithm known as the extended Kalman filter (EKF). This work proposes the implementation of the EKF for SOC estimation of a lithium ion 18650 single-cell battery, with experimental validation. The algorithm is embedded in BMS composed of Arduino MEGA 2560 microcontroller and auxiliary hardware. The battery is modeled using a simple model, which aims to facilitate implementation in embedded systems. The results revealed that the SOC estimation via EKF embedded in BMS showed maximum errors around 4%, a result compatible with other references in the literature. Based on the EKF approach, an alternative method, called a modified Coulomb counting, was defined, which uses parameters calculated in the EKF to establish a adaptive Coulomb counting to the unknown initial SOC. This new method is also capable of reducing estimation fluctuations, a common feature found in the EKF implementation. The use of the modified counting proved to be useful in several cases, often reducing the maximum estimation error to values less than 1%. Finally, the use of the simple model with EKF proved to be adequate in terms of the balance between precision and simplicity.
doi_str_mv 10.1109/TLA.2022.9904765
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2718795988</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9904765</ieee_id><sourcerecordid>2718795988</sourcerecordid><originalsourceid>FETCH-LOGICAL-c221t-d4131ceff3901e032995afa807ace880d53d8423d38f271d8902094e4abcb01b3</originalsourceid><addsrcrecordid>eNpNkM1Lw0AUxBdRsFbvgpcFz6lvd5Nm91hCqmLFg9Vr2GTf1i35qMkW2v_ehFTxNAMz8x78CLllMGMM1MN6tZhx4HymFITxPDojExaFMgCl-Pk_f0muum4LIORcigmp0sMOW1dh7XVJP3XpjPauqWlj6bvXHgeTfOl2gzTtvKvGND_S9OCxNmjoiy4rXdOlKz22VNeGvjbGWddHSbMvmyoftPau3lyTC6vLDm9OOiUfy3SdPAWrt8fnZLEKCs6ZD0zIBCvQWqGAIQiuVKStlhDrAqUEEwkjQy6MkJbHzEgFHFSIoc6LHFgupuR-vLtrm-89dj7bNvu27l9mfV_GKlJS9i0YW0XbdF2LNtv1JHR7zBhkA9Ssh5oNULMT1H5yN04cIv7Vf9MfgptzBQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2718795988</pqid></control><display><type>article</type><title>Experimental Validation of State of Charge Estimation by Extended Kalman Filter and Modified Coulomb Counting</title><source>IEEE Electronic Library (IEL)</source><creator>Ando Junior, Oswaldo Hideo ; Sylvestrin, Giovane Ronei ; Scherer, Helton Fernando</creator><creatorcontrib>Ando Junior, Oswaldo Hideo ; Sylvestrin, Giovane Ronei ; Scherer, Helton Fernando</creatorcontrib><description>The operation of batteries in energy storage systems (SAE) is controlled by the battery management system (BMS). Within the scope of research related to the functions of the BMS, there is attention to the methods of estimating the state of charge (SOC) that use state estimators. Among the estimators, there is the algorithm known as the extended Kalman filter (EKF). This work proposes the implementation of the EKF for SOC estimation of a lithium ion 18650 single-cell battery, with experimental validation. The algorithm is embedded in BMS composed of Arduino MEGA 2560 microcontroller and auxiliary hardware. The battery is modeled using a simple model, which aims to facilitate implementation in embedded systems. The results revealed that the SOC estimation via EKF embedded in BMS showed maximum errors around 4%, a result compatible with other references in the literature. Based on the EKF approach, an alternative method, called a modified Coulomb counting, was defined, which uses parameters calculated in the EKF to establish a adaptive Coulomb counting to the unknown initial SOC. This new method is also capable of reducing estimation fluctuations, a common feature found in the EKF implementation. The use of the modified counting proved to be useful in several cases, often reducing the maximum estimation error to values less than 1%. Finally, the use of the simple model with EKF proved to be adequate in terms of the balance between precision and simplicity.</description><identifier>ISSN: 1548-0992</identifier><identifier>EISSN: 1548-0992</identifier><identifier>DOI: 10.1109/TLA.2022.9904765</identifier><language>eng</language><publisher>Los Alamitos: IEEE</publisher><subject>18650 lithium ions ; Adaptation models ; Algorithms ; Batteries ; BMS ; EKF ; Embedded systems ; Energy storage ; Estimators ; Extended Kalman filter ; Hardware ; Integrated circuit modeling ; Kalman filters ; Lithium ions ; Mathematical models ; Microcontrollers ; modified Coulomb counting ; Parameter modification ; Rechargeable batteries ; State estimation ; State of charge ; Storage batteries ; Storage systems</subject><ispartof>Revista IEEE América Latina, 2022-11, Vol.20 (11), p.2395-2403</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c221t-d4131ceff3901e032995afa807ace880d53d8423d38f271d8902094e4abcb01b3</citedby><orcidid>0000-0002-3513-8443 ; 0000-0003-1609-0357 ; 0000-0002-6951-0063</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9904765$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9904765$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ando Junior, Oswaldo Hideo</creatorcontrib><creatorcontrib>Sylvestrin, Giovane Ronei</creatorcontrib><creatorcontrib>Scherer, Helton Fernando</creatorcontrib><title>Experimental Validation of State of Charge Estimation by Extended Kalman Filter and Modified Coulomb Counting</title><title>Revista IEEE América Latina</title><addtitle>T-LA</addtitle><description>The operation of batteries in energy storage systems (SAE) is controlled by the battery management system (BMS). Within the scope of research related to the functions of the BMS, there is attention to the methods of estimating the state of charge (SOC) that use state estimators. Among the estimators, there is the algorithm known as the extended Kalman filter (EKF). This work proposes the implementation of the EKF for SOC estimation of a lithium ion 18650 single-cell battery, with experimental validation. The algorithm is embedded in BMS composed of Arduino MEGA 2560 microcontroller and auxiliary hardware. The battery is modeled using a simple model, which aims to facilitate implementation in embedded systems. The results revealed that the SOC estimation via EKF embedded in BMS showed maximum errors around 4%, a result compatible with other references in the literature. Based on the EKF approach, an alternative method, called a modified Coulomb counting, was defined, which uses parameters calculated in the EKF to establish a adaptive Coulomb counting to the unknown initial SOC. This new method is also capable of reducing estimation fluctuations, a common feature found in the EKF implementation. The use of the modified counting proved to be useful in several cases, often reducing the maximum estimation error to values less than 1%. Finally, the use of the simple model with EKF proved to be adequate in terms of the balance between precision and simplicity.</description><subject>18650 lithium ions</subject><subject>Adaptation models</subject><subject>Algorithms</subject><subject>Batteries</subject><subject>BMS</subject><subject>EKF</subject><subject>Embedded systems</subject><subject>Energy storage</subject><subject>Estimators</subject><subject>Extended Kalman filter</subject><subject>Hardware</subject><subject>Integrated circuit modeling</subject><subject>Kalman filters</subject><subject>Lithium ions</subject><subject>Mathematical models</subject><subject>Microcontrollers</subject><subject>modified Coulomb counting</subject><subject>Parameter modification</subject><subject>Rechargeable batteries</subject><subject>State estimation</subject><subject>State of charge</subject><subject>Storage batteries</subject><subject>Storage systems</subject><issn>1548-0992</issn><issn>1548-0992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM1Lw0AUxBdRsFbvgpcFz6lvd5Nm91hCqmLFg9Vr2GTf1i35qMkW2v_ehFTxNAMz8x78CLllMGMM1MN6tZhx4HymFITxPDojExaFMgCl-Pk_f0muum4LIORcigmp0sMOW1dh7XVJP3XpjPauqWlj6bvXHgeTfOl2gzTtvKvGND_S9OCxNmjoiy4rXdOlKz22VNeGvjbGWddHSbMvmyoftPau3lyTC6vLDm9OOiUfy3SdPAWrt8fnZLEKCs6ZD0zIBCvQWqGAIQiuVKStlhDrAqUEEwkjQy6MkJbHzEgFHFSIoc6LHFgupuR-vLtrm-89dj7bNvu27l9mfV_GKlJS9i0YW0XbdF2LNtv1JHR7zBhkA9Ssh5oNULMT1H5yN04cIv7Vf9MfgptzBQ</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Ando Junior, Oswaldo Hideo</creator><creator>Sylvestrin, Giovane Ronei</creator><creator>Scherer, Helton Fernando</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-3513-8443</orcidid><orcidid>https://orcid.org/0000-0003-1609-0357</orcidid><orcidid>https://orcid.org/0000-0002-6951-0063</orcidid></search><sort><creationdate>20221101</creationdate><title>Experimental Validation of State of Charge Estimation by Extended Kalman Filter and Modified Coulomb Counting</title><author>Ando Junior, Oswaldo Hideo ; Sylvestrin, Giovane Ronei ; Scherer, Helton Fernando</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c221t-d4131ceff3901e032995afa807ace880d53d8423d38f271d8902094e4abcb01b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>18650 lithium ions</topic><topic>Adaptation models</topic><topic>Algorithms</topic><topic>Batteries</topic><topic>BMS</topic><topic>EKF</topic><topic>Embedded systems</topic><topic>Energy storage</topic><topic>Estimators</topic><topic>Extended Kalman filter</topic><topic>Hardware</topic><topic>Integrated circuit modeling</topic><topic>Kalman filters</topic><topic>Lithium ions</topic><topic>Mathematical models</topic><topic>Microcontrollers</topic><topic>modified Coulomb counting</topic><topic>Parameter modification</topic><topic>Rechargeable batteries</topic><topic>State estimation</topic><topic>State of charge</topic><topic>Storage batteries</topic><topic>Storage systems</topic><toplevel>online_resources</toplevel><creatorcontrib>Ando Junior, Oswaldo Hideo</creatorcontrib><creatorcontrib>Sylvestrin, Giovane Ronei</creatorcontrib><creatorcontrib>Scherer, Helton Fernando</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Revista IEEE América Latina</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ando Junior, Oswaldo Hideo</au><au>Sylvestrin, Giovane Ronei</au><au>Scherer, Helton Fernando</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental Validation of State of Charge Estimation by Extended Kalman Filter and Modified Coulomb Counting</atitle><jtitle>Revista IEEE América Latina</jtitle><stitle>T-LA</stitle><date>2022-11-01</date><risdate>2022</risdate><volume>20</volume><issue>11</issue><spage>2395</spage><epage>2403</epage><pages>2395-2403</pages><issn>1548-0992</issn><eissn>1548-0992</eissn><abstract>The operation of batteries in energy storage systems (SAE) is controlled by the battery management system (BMS). Within the scope of research related to the functions of the BMS, there is attention to the methods of estimating the state of charge (SOC) that use state estimators. Among the estimators, there is the algorithm known as the extended Kalman filter (EKF). This work proposes the implementation of the EKF for SOC estimation of a lithium ion 18650 single-cell battery, with experimental validation. The algorithm is embedded in BMS composed of Arduino MEGA 2560 microcontroller and auxiliary hardware. The battery is modeled using a simple model, which aims to facilitate implementation in embedded systems. The results revealed that the SOC estimation via EKF embedded in BMS showed maximum errors around 4%, a result compatible with other references in the literature. Based on the EKF approach, an alternative method, called a modified Coulomb counting, was defined, which uses parameters calculated in the EKF to establish a adaptive Coulomb counting to the unknown initial SOC. This new method is also capable of reducing estimation fluctuations, a common feature found in the EKF implementation. The use of the modified counting proved to be useful in several cases, often reducing the maximum estimation error to values less than 1%. Finally, the use of the simple model with EKF proved to be adequate in terms of the balance between precision and simplicity.</abstract><cop>Los Alamitos</cop><pub>IEEE</pub><doi>10.1109/TLA.2022.9904765</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-3513-8443</orcidid><orcidid>https://orcid.org/0000-0003-1609-0357</orcidid><orcidid>https://orcid.org/0000-0002-6951-0063</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1548-0992
ispartof Revista IEEE América Latina, 2022-11, Vol.20 (11), p.2395-2403
issn 1548-0992
1548-0992
language eng
recordid cdi_proquest_journals_2718795988
source IEEE Electronic Library (IEL)
subjects 18650 lithium ions
Adaptation models
Algorithms
Batteries
BMS
EKF
Embedded systems
Energy storage
Estimators
Extended Kalman filter
Hardware
Integrated circuit modeling
Kalman filters
Lithium ions
Mathematical models
Microcontrollers
modified Coulomb counting
Parameter modification
Rechargeable batteries
State estimation
State of charge
Storage batteries
Storage systems
title Experimental Validation of State of Charge Estimation by Extended Kalman Filter and Modified Coulomb Counting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T21%3A33%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20Validation%20of%20State%20of%20Charge%20Estimation%20by%20Extended%20Kalman%20Filter%20and%20Modified%20Coulomb%20Counting&rft.jtitle=Revista%20IEEE%20Am%C3%A9rica%20Latina&rft.au=Ando%20Junior,%20Oswaldo%20Hideo&rft.date=2022-11-01&rft.volume=20&rft.issue=11&rft.spage=2395&rft.epage=2403&rft.pages=2395-2403&rft.issn=1548-0992&rft.eissn=1548-0992&rft_id=info:doi/10.1109/TLA.2022.9904765&rft_dat=%3Cproquest_RIE%3E2718795988%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2718795988&rft_id=info:pmid/&rft_ieee_id=9904765&rfr_iscdi=true