A Proposed Deep Learning based Framework for Arabic Text Classification

Deep learning has become one of the crucial trends in the modern era due to the huge amount of data that has become available. This paper aims to investigate and improve a generic framework for Arabic Text Classification (ATC) with different deep learning techniques. Besides, it deals directly with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of advanced computer science & applications 2022-01, Vol.13 (8)
Hauptverfasser: Sayed, Mostafa, Abdelkader, Hatem, Khedr, Ayman E., Salem, Rashed
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page
container_title International journal of advanced computer science & applications
container_volume 13
creator Sayed, Mostafa
Abdelkader, Hatem
Khedr, Ayman E.
Salem, Rashed
description Deep learning has become one of the crucial trends in the modern era due to the huge amount of data that has become available. This paper aims to investigate and improve a generic framework for Arabic Text Classification (ATC) with different deep learning techniques. Besides, it deals directly with a word in its original style as a basic unit of modern Arabic sentence and on a different level of N-grams versus a combination of Intersected Consecutive Word proposed method (ICW). However, it aimed to discuss the results of the different experiments for the enhancements of the proposed method on different deep learning algorithms such as Scaled Conjugate Gradient (SCG) and Gradient descent with momentum and adaptive learning rate backpropagation (GDX) on ATC. The results showed that the proposed framework applied with the SCG algorithm and TF-IDF outperforms the GDX algorithm with an accuracy ratio of 90.65%.
doi_str_mv 10.14569/IJACSA.2022.0130836
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2718751876</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2718751876</sourcerecordid><originalsourceid>FETCH-LOGICAL-c204t-51206239492f96633cc9271ad675dff7154195a4b95de8b2d0f2ccd71bc804723</originalsourceid><addsrcrecordid>eNotkN1LwzAUxYMoOOb-Ax8CPrfmO81jqW5OBgpO8C2kaSKdW1OTDvW_t_u4cLiXy-Ec-AFwi1GOGRfqfvlcVm9lThAhOcIUFVRcgAnBXGScS3R5vIsMI_lxDWYpbdA4VBFR0AlYlPA1hj4k18AH53q4ciZ2bfcJa3P4zaPZuZ8Qv6APEZbR1K2Fa_c7wGprUmp9a83Qhu4GXHmzTW523lPwPn9cV0_Z6mWxrMpVZgliQ8YxQYJQxRTxSghKrVVEYtMIyRvvJeYMK25YrXjjipo0yBNrG4lrWyAmCZ2Cu1NuH8P33qVBb8I-dmOlHnMKyUeJ0cVOLhtDStF53cd2Z-KfxkgfqekTNX2gps_U6D8iA14Z</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2718751876</pqid></control><display><type>article</type><title>A Proposed Deep Learning based Framework for Arabic Text Classification</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Sayed, Mostafa ; Abdelkader, Hatem ; Khedr, Ayman E. ; Salem, Rashed</creator><creatorcontrib>Sayed, Mostafa ; Abdelkader, Hatem ; Khedr, Ayman E. ; Salem, Rashed</creatorcontrib><description>Deep learning has become one of the crucial trends in the modern era due to the huge amount of data that has become available. This paper aims to investigate and improve a generic framework for Arabic Text Classification (ATC) with different deep learning techniques. Besides, it deals directly with a word in its original style as a basic unit of modern Arabic sentence and on a different level of N-grams versus a combination of Intersected Consecutive Word proposed method (ICW). However, it aimed to discuss the results of the different experiments for the enhancements of the proposed method on different deep learning algorithms such as Scaled Conjugate Gradient (SCG) and Gradient descent with momentum and adaptive learning rate backpropagation (GDX) on ATC. The results showed that the proposed framework applied with the SCG algorithm and TF-IDF outperforms the GDX algorithm with an accuracy ratio of 90.65%.</description><identifier>ISSN: 2158-107X</identifier><identifier>EISSN: 2156-5570</identifier><identifier>DOI: 10.14569/IJACSA.2022.0130836</identifier><language>eng</language><publisher>West Yorkshire: Science and Information (SAI) Organization Limited</publisher><subject>Algorithms ; Arabic language ; Artificial intelligence ; Back propagation ; Classification ; Computer science ; Computers ; Datasets ; Deep learning ; Information retrieval ; Machine learning ; Text categorization</subject><ispartof>International journal of advanced computer science &amp; applications, 2022-01, Vol.13 (8)</ispartof><rights>2022. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Sayed, Mostafa</creatorcontrib><creatorcontrib>Abdelkader, Hatem</creatorcontrib><creatorcontrib>Khedr, Ayman E.</creatorcontrib><creatorcontrib>Salem, Rashed</creatorcontrib><title>A Proposed Deep Learning based Framework for Arabic Text Classification</title><title>International journal of advanced computer science &amp; applications</title><description>Deep learning has become one of the crucial trends in the modern era due to the huge amount of data that has become available. This paper aims to investigate and improve a generic framework for Arabic Text Classification (ATC) with different deep learning techniques. Besides, it deals directly with a word in its original style as a basic unit of modern Arabic sentence and on a different level of N-grams versus a combination of Intersected Consecutive Word proposed method (ICW). However, it aimed to discuss the results of the different experiments for the enhancements of the proposed method on different deep learning algorithms such as Scaled Conjugate Gradient (SCG) and Gradient descent with momentum and adaptive learning rate backpropagation (GDX) on ATC. The results showed that the proposed framework applied with the SCG algorithm and TF-IDF outperforms the GDX algorithm with an accuracy ratio of 90.65%.</description><subject>Algorithms</subject><subject>Arabic language</subject><subject>Artificial intelligence</subject><subject>Back propagation</subject><subject>Classification</subject><subject>Computer science</subject><subject>Computers</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Information retrieval</subject><subject>Machine learning</subject><subject>Text categorization</subject><issn>2158-107X</issn><issn>2156-5570</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNotkN1LwzAUxYMoOOb-Ax8CPrfmO81jqW5OBgpO8C2kaSKdW1OTDvW_t_u4cLiXy-Ec-AFwi1GOGRfqfvlcVm9lThAhOcIUFVRcgAnBXGScS3R5vIsMI_lxDWYpbdA4VBFR0AlYlPA1hj4k18AH53q4ciZ2bfcJa3P4zaPZuZ8Qv6APEZbR1K2Fa_c7wGprUmp9a83Qhu4GXHmzTW523lPwPn9cV0_Z6mWxrMpVZgliQ8YxQYJQxRTxSghKrVVEYtMIyRvvJeYMK25YrXjjipo0yBNrG4lrWyAmCZ2Cu1NuH8P33qVBb8I-dmOlHnMKyUeJ0cVOLhtDStF53cd2Z-KfxkgfqekTNX2gps_U6D8iA14Z</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Sayed, Mostafa</creator><creator>Abdelkader, Hatem</creator><creator>Khedr, Ayman E.</creator><creator>Salem, Rashed</creator><general>Science and Information (SAI) Organization Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20220101</creationdate><title>A Proposed Deep Learning based Framework for Arabic Text Classification</title><author>Sayed, Mostafa ; Abdelkader, Hatem ; Khedr, Ayman E. ; Salem, Rashed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c204t-51206239492f96633cc9271ad675dff7154195a4b95de8b2d0f2ccd71bc804723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Arabic language</topic><topic>Artificial intelligence</topic><topic>Back propagation</topic><topic>Classification</topic><topic>Computer science</topic><topic>Computers</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Information retrieval</topic><topic>Machine learning</topic><topic>Text categorization</topic><toplevel>online_resources</toplevel><creatorcontrib>Sayed, Mostafa</creatorcontrib><creatorcontrib>Abdelkader, Hatem</creatorcontrib><creatorcontrib>Khedr, Ayman E.</creatorcontrib><creatorcontrib>Salem, Rashed</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>International journal of advanced computer science &amp; applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sayed, Mostafa</au><au>Abdelkader, Hatem</au><au>Khedr, Ayman E.</au><au>Salem, Rashed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Proposed Deep Learning based Framework for Arabic Text Classification</atitle><jtitle>International journal of advanced computer science &amp; applications</jtitle><date>2022-01-01</date><risdate>2022</risdate><volume>13</volume><issue>8</issue><issn>2158-107X</issn><eissn>2156-5570</eissn><abstract>Deep learning has become one of the crucial trends in the modern era due to the huge amount of data that has become available. This paper aims to investigate and improve a generic framework for Arabic Text Classification (ATC) with different deep learning techniques. Besides, it deals directly with a word in its original style as a basic unit of modern Arabic sentence and on a different level of N-grams versus a combination of Intersected Consecutive Word proposed method (ICW). However, it aimed to discuss the results of the different experiments for the enhancements of the proposed method on different deep learning algorithms such as Scaled Conjugate Gradient (SCG) and Gradient descent with momentum and adaptive learning rate backpropagation (GDX) on ATC. The results showed that the proposed framework applied with the SCG algorithm and TF-IDF outperforms the GDX algorithm with an accuracy ratio of 90.65%.</abstract><cop>West Yorkshire</cop><pub>Science and Information (SAI) Organization Limited</pub><doi>10.14569/IJACSA.2022.0130836</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2158-107X
ispartof International journal of advanced computer science & applications, 2022-01, Vol.13 (8)
issn 2158-107X
2156-5570
language eng
recordid cdi_proquest_journals_2718751876
source EZB-FREE-00999 freely available EZB journals
subjects Algorithms
Arabic language
Artificial intelligence
Back propagation
Classification
Computer science
Computers
Datasets
Deep learning
Information retrieval
Machine learning
Text categorization
title A Proposed Deep Learning based Framework for Arabic Text Classification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T03%3A22%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Proposed%20Deep%20Learning%20based%20Framework%20for%20Arabic%20Text%20Classification&rft.jtitle=International%20journal%20of%20advanced%20computer%20science%20&%20applications&rft.au=Sayed,%20Mostafa&rft.date=2022-01-01&rft.volume=13&rft.issue=8&rft.issn=2158-107X&rft.eissn=2156-5570&rft_id=info:doi/10.14569/IJACSA.2022.0130836&rft_dat=%3Cproquest_cross%3E2718751876%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2718751876&rft_id=info:pmid/&rfr_iscdi=true