Membrane separation of porcine blood for food industrial use of permeate and retentate

In this article, we introduce the importance of blood processing for human consumption while also presenting the methodology of porcine blood membrane separation to plasma and red blood cell fractions, as well as the membrane purification after porcine blood separation. Basic analytical measurements...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of food and nutrition research 2022-01, Vol.61 (3), p.218
Hauptverfasser: Csurka, Tamás, Varga, Áron, Ladányi, Márta, Friedrich, László Ferenc, Pásztor-Huszár, Klára
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page 218
container_title Journal of food and nutrition research
container_volume 61
creator Csurka, Tamás
Varga, Áron
Ladányi, Márta
Friedrich, László Ferenc
Pásztor-Huszár, Klára
description In this article, we introduce the importance of blood processing for human consumption while also presenting the methodology of porcine blood membrane separation to plasma and red blood cell fractions, as well as the membrane purification after porcine blood separation. Basic analytical measurements were carried out to investigate the blood product attributes, which relate to technological and nutritional quality depending on the separation parameters. Next, we present how the relevant hydrodynamical parameters were calculated during the experiments. Membrane separation was realized by crossflow microfiltration with pore size of 0.8 μm or 1.2 μm, retentate flow rate of 200 l·h-1 or 300 l·h-1 and with transmembrane pressure of 1 × 105 Pa, 2 × 105 Pa or 3 × 105 Pa. The experimental design was analysed, the parameters of the objective function and effect sizes were estimated and the global minimum of the objective function was successfully identified. The results of this optimization can be applied in practice. The membrane separation parameters were then optimized according to a model based on the observed data. An optimum was detected within the examined factor levels and experimental conditions at the lowest transmembrane pressure and at the highest membrane pore size.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2718684848</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2718684848</sourcerecordid><originalsourceid>FETCH-LOGICAL-p113t-76b74aeafb22937457420fc331855d3c4f0fc2532b0b1b827852bad50f5d62183</originalsourceid><addsrcrecordid>eNotjUtLBDEQhIMouK7-h4DngaTz9CiLL1jxol6XZNKBWWaTMcn8f8MqRVP1NU3XBdlwIewgQbPLc9aD1QauyU2tR8a01FJsyPc7nnxxCWnFxRXXppxojnTJZZz61s85Bxpz6dPDlMJaW5ncTNeK50MsJ3QNqUuBFmyYWqdbchXdXPHu37fk6_npc_c67D9e3naP-2HhXLTBaG-kQxc9wIMwUhkJLI5CcKtUEKOMnUAJ8Mxzb8FYBd4FxaIKGrgVW3L_93cp-WfF2g7HvJbUKw9guNVWdolfdYBOAg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2718684848</pqid></control><display><type>article</type><title>Membrane separation of porcine blood for food industrial use of permeate and retentate</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Csurka, Tamás ; Varga, Áron ; Ladányi, Márta ; Friedrich, László Ferenc ; Pásztor-Huszár, Klára</creator><creatorcontrib>Csurka, Tamás ; Varga, Áron ; Ladányi, Márta ; Friedrich, László Ferenc ; Pásztor-Huszár, Klára</creatorcontrib><description>In this article, we introduce the importance of blood processing for human consumption while also presenting the methodology of porcine blood membrane separation to plasma and red blood cell fractions, as well as the membrane purification after porcine blood separation. Basic analytical measurements were carried out to investigate the blood product attributes, which relate to technological and nutritional quality depending on the separation parameters. Next, we present how the relevant hydrodynamical parameters were calculated during the experiments. Membrane separation was realized by crossflow microfiltration with pore size of 0.8 μm or 1.2 μm, retentate flow rate of 200 l·h-1 or 300 l·h-1 and with transmembrane pressure of 1 × 105 Pa, 2 × 105 Pa or 3 × 105 Pa. The experimental design was analysed, the parameters of the objective function and effect sizes were estimated and the global minimum of the objective function was successfully identified. The results of this optimization can be applied in practice. The membrane separation parameters were then optimized according to a model based on the observed data. An optimum was detected within the examined factor levels and experimental conditions at the lowest transmembrane pressure and at the highest membrane pore size.</description><identifier>ISSN: 1336-8672</identifier><identifier>EISSN: 1338-4260</identifier><language>eng</language><publisher>Bratislava: Vyskumny Ustav Potravinarsky</publisher><subject>Blood ; Cross flow ; Design of experiments ; Design parameters ; Erythrocytes ; Experimental design ; Flow velocity ; Food industry ; Industrial applications ; Membrane separation ; Membranes ; Microfiltration ; Nutritive value ; Objective function ; Optimization ; Pore size ; Separation</subject><ispartof>Journal of food and nutrition research, 2022-01, Vol.61 (3), p.218</ispartof><rights>Copyright Vyskumny Ustav Potravinarsky 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids></links><search><creatorcontrib>Csurka, Tamás</creatorcontrib><creatorcontrib>Varga, Áron</creatorcontrib><creatorcontrib>Ladányi, Márta</creatorcontrib><creatorcontrib>Friedrich, László Ferenc</creatorcontrib><creatorcontrib>Pásztor-Huszár, Klára</creatorcontrib><title>Membrane separation of porcine blood for food industrial use of permeate and retentate</title><title>Journal of food and nutrition research</title><description>In this article, we introduce the importance of blood processing for human consumption while also presenting the methodology of porcine blood membrane separation to plasma and red blood cell fractions, as well as the membrane purification after porcine blood separation. Basic analytical measurements were carried out to investigate the blood product attributes, which relate to technological and nutritional quality depending on the separation parameters. Next, we present how the relevant hydrodynamical parameters were calculated during the experiments. Membrane separation was realized by crossflow microfiltration with pore size of 0.8 μm or 1.2 μm, retentate flow rate of 200 l·h-1 or 300 l·h-1 and with transmembrane pressure of 1 × 105 Pa, 2 × 105 Pa or 3 × 105 Pa. The experimental design was analysed, the parameters of the objective function and effect sizes were estimated and the global minimum of the objective function was successfully identified. The results of this optimization can be applied in practice. The membrane separation parameters were then optimized according to a model based on the observed data. An optimum was detected within the examined factor levels and experimental conditions at the lowest transmembrane pressure and at the highest membrane pore size.</description><subject>Blood</subject><subject>Cross flow</subject><subject>Design of experiments</subject><subject>Design parameters</subject><subject>Erythrocytes</subject><subject>Experimental design</subject><subject>Flow velocity</subject><subject>Food industry</subject><subject>Industrial applications</subject><subject>Membrane separation</subject><subject>Membranes</subject><subject>Microfiltration</subject><subject>Nutritive value</subject><subject>Objective function</subject><subject>Optimization</subject><subject>Pore size</subject><subject>Separation</subject><issn>1336-8672</issn><issn>1338-4260</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNotjUtLBDEQhIMouK7-h4DngaTz9CiLL1jxol6XZNKBWWaTMcn8f8MqRVP1NU3XBdlwIewgQbPLc9aD1QauyU2tR8a01FJsyPc7nnxxCWnFxRXXppxojnTJZZz61s85Bxpz6dPDlMJaW5ncTNeK50MsJ3QNqUuBFmyYWqdbchXdXPHu37fk6_npc_c67D9e3naP-2HhXLTBaG-kQxc9wIMwUhkJLI5CcKtUEKOMnUAJ8Mxzb8FYBd4FxaIKGrgVW3L_93cp-WfF2g7HvJbUKw9guNVWdolfdYBOAg</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Csurka, Tamás</creator><creator>Varga, Áron</creator><creator>Ladányi, Márta</creator><creator>Friedrich, László Ferenc</creator><creator>Pásztor-Huszár, Klára</creator><general>Vyskumny Ustav Potravinarsky</general><scope>7QR</scope><scope>7T2</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20220101</creationdate><title>Membrane separation of porcine blood for food industrial use of permeate and retentate</title><author>Csurka, Tamás ; Varga, Áron ; Ladányi, Márta ; Friedrich, László Ferenc ; Pásztor-Huszár, Klára</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p113t-76b74aeafb22937457420fc331855d3c4f0fc2532b0b1b827852bad50f5d62183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Blood</topic><topic>Cross flow</topic><topic>Design of experiments</topic><topic>Design parameters</topic><topic>Erythrocytes</topic><topic>Experimental design</topic><topic>Flow velocity</topic><topic>Food industry</topic><topic>Industrial applications</topic><topic>Membrane separation</topic><topic>Membranes</topic><topic>Microfiltration</topic><topic>Nutritive value</topic><topic>Objective function</topic><topic>Optimization</topic><topic>Pore size</topic><topic>Separation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Csurka, Tamás</creatorcontrib><creatorcontrib>Varga, Áron</creatorcontrib><creatorcontrib>Ladányi, Márta</creatorcontrib><creatorcontrib>Friedrich, László Ferenc</creatorcontrib><creatorcontrib>Pásztor-Huszár, Klára</creatorcontrib><collection>Chemoreception Abstracts</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Journal of food and nutrition research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Csurka, Tamás</au><au>Varga, Áron</au><au>Ladányi, Márta</au><au>Friedrich, László Ferenc</au><au>Pásztor-Huszár, Klára</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Membrane separation of porcine blood for food industrial use of permeate and retentate</atitle><jtitle>Journal of food and nutrition research</jtitle><date>2022-01-01</date><risdate>2022</risdate><volume>61</volume><issue>3</issue><spage>218</spage><pages>218-</pages><issn>1336-8672</issn><eissn>1338-4260</eissn><abstract>In this article, we introduce the importance of blood processing for human consumption while also presenting the methodology of porcine blood membrane separation to plasma and red blood cell fractions, as well as the membrane purification after porcine blood separation. Basic analytical measurements were carried out to investigate the blood product attributes, which relate to technological and nutritional quality depending on the separation parameters. Next, we present how the relevant hydrodynamical parameters were calculated during the experiments. Membrane separation was realized by crossflow microfiltration with pore size of 0.8 μm or 1.2 μm, retentate flow rate of 200 l·h-1 or 300 l·h-1 and with transmembrane pressure of 1 × 105 Pa, 2 × 105 Pa or 3 × 105 Pa. The experimental design was analysed, the parameters of the objective function and effect sizes were estimated and the global minimum of the objective function was successfully identified. The results of this optimization can be applied in practice. The membrane separation parameters were then optimized according to a model based on the observed data. An optimum was detected within the examined factor levels and experimental conditions at the lowest transmembrane pressure and at the highest membrane pore size.</abstract><cop>Bratislava</cop><pub>Vyskumny Ustav Potravinarsky</pub></addata></record>
fulltext fulltext
identifier ISSN: 1336-8672
ispartof Journal of food and nutrition research, 2022-01, Vol.61 (3), p.218
issn 1336-8672
1338-4260
language eng
recordid cdi_proquest_journals_2718684848
source EZB-FREE-00999 freely available EZB journals
subjects Blood
Cross flow
Design of experiments
Design parameters
Erythrocytes
Experimental design
Flow velocity
Food industry
Industrial applications
Membrane separation
Membranes
Microfiltration
Nutritive value
Objective function
Optimization
Pore size
Separation
title Membrane separation of porcine blood for food industrial use of permeate and retentate
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T13%3A42%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Membrane%20separation%20of%20porcine%20blood%20for%20food%20industrial%20use%20of%20permeate%20and%20retentate&rft.jtitle=Journal%20of%20food%20and%20nutrition%20research&rft.au=Csurka,%20Tam%C3%A1s&rft.date=2022-01-01&rft.volume=61&rft.issue=3&rft.spage=218&rft.pages=218-&rft.issn=1336-8672&rft.eissn=1338-4260&rft_id=info:doi/&rft_dat=%3Cproquest%3E2718684848%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2718684848&rft_id=info:pmid/&rfr_iscdi=true