Membrane separation of porcine blood for food industrial use of permeate and retentate
In this article, we introduce the importance of blood processing for human consumption while also presenting the methodology of porcine blood membrane separation to plasma and red blood cell fractions, as well as the membrane purification after porcine blood separation. Basic analytical measurements...
Gespeichert in:
Veröffentlicht in: | Journal of food and nutrition research 2022-01, Vol.61 (3), p.218 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | 218 |
container_title | Journal of food and nutrition research |
container_volume | 61 |
creator | Csurka, Tamás Varga, Áron Ladányi, Márta Friedrich, László Ferenc Pásztor-Huszár, Klára |
description | In this article, we introduce the importance of blood processing for human consumption while also presenting the methodology of porcine blood membrane separation to plasma and red blood cell fractions, as well as the membrane purification after porcine blood separation. Basic analytical measurements were carried out to investigate the blood product attributes, which relate to technological and nutritional quality depending on the separation parameters. Next, we present how the relevant hydrodynamical parameters were calculated during the experiments. Membrane separation was realized by crossflow microfiltration with pore size of 0.8 μm or 1.2 μm, retentate flow rate of 200 l·h-1 or 300 l·h-1 and with transmembrane pressure of 1 × 105 Pa, 2 × 105 Pa or 3 × 105 Pa. The experimental design was analysed, the parameters of the objective function and effect sizes were estimated and the global minimum of the objective function was successfully identified. The results of this optimization can be applied in practice. The membrane separation parameters were then optimized according to a model based on the observed data. An optimum was detected within the examined factor levels and experimental conditions at the lowest transmembrane pressure and at the highest membrane pore size. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2718684848</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2718684848</sourcerecordid><originalsourceid>FETCH-LOGICAL-p113t-76b74aeafb22937457420fc331855d3c4f0fc2532b0b1b827852bad50f5d62183</originalsourceid><addsrcrecordid>eNotjUtLBDEQhIMouK7-h4DngaTz9CiLL1jxol6XZNKBWWaTMcn8f8MqRVP1NU3XBdlwIewgQbPLc9aD1QauyU2tR8a01FJsyPc7nnxxCWnFxRXXppxojnTJZZz61s85Bxpz6dPDlMJaW5ncTNeK50MsJ3QNqUuBFmyYWqdbchXdXPHu37fk6_npc_c67D9e3naP-2HhXLTBaG-kQxc9wIMwUhkJLI5CcKtUEKOMnUAJ8Mxzb8FYBd4FxaIKGrgVW3L_93cp-WfF2g7HvJbUKw9guNVWdolfdYBOAg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2718684848</pqid></control><display><type>article</type><title>Membrane separation of porcine blood for food industrial use of permeate and retentate</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Csurka, Tamás ; Varga, Áron ; Ladányi, Márta ; Friedrich, László Ferenc ; Pásztor-Huszár, Klára</creator><creatorcontrib>Csurka, Tamás ; Varga, Áron ; Ladányi, Márta ; Friedrich, László Ferenc ; Pásztor-Huszár, Klára</creatorcontrib><description>In this article, we introduce the importance of blood processing for human consumption while also presenting the methodology of porcine blood membrane separation to plasma and red blood cell fractions, as well as the membrane purification after porcine blood separation. Basic analytical measurements were carried out to investigate the blood product attributes, which relate to technological and nutritional quality depending on the separation parameters. Next, we present how the relevant hydrodynamical parameters were calculated during the experiments. Membrane separation was realized by crossflow microfiltration with pore size of 0.8 μm or 1.2 μm, retentate flow rate of 200 l·h-1 or 300 l·h-1 and with transmembrane pressure of 1 × 105 Pa, 2 × 105 Pa or 3 × 105 Pa. The experimental design was analysed, the parameters of the objective function and effect sizes were estimated and the global minimum of the objective function was successfully identified. The results of this optimization can be applied in practice. The membrane separation parameters were then optimized according to a model based on the observed data. An optimum was detected within the examined factor levels and experimental conditions at the lowest transmembrane pressure and at the highest membrane pore size.</description><identifier>ISSN: 1336-8672</identifier><identifier>EISSN: 1338-4260</identifier><language>eng</language><publisher>Bratislava: Vyskumny Ustav Potravinarsky</publisher><subject>Blood ; Cross flow ; Design of experiments ; Design parameters ; Erythrocytes ; Experimental design ; Flow velocity ; Food industry ; Industrial applications ; Membrane separation ; Membranes ; Microfiltration ; Nutritive value ; Objective function ; Optimization ; Pore size ; Separation</subject><ispartof>Journal of food and nutrition research, 2022-01, Vol.61 (3), p.218</ispartof><rights>Copyright Vyskumny Ustav Potravinarsky 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids></links><search><creatorcontrib>Csurka, Tamás</creatorcontrib><creatorcontrib>Varga, Áron</creatorcontrib><creatorcontrib>Ladányi, Márta</creatorcontrib><creatorcontrib>Friedrich, László Ferenc</creatorcontrib><creatorcontrib>Pásztor-Huszár, Klára</creatorcontrib><title>Membrane separation of porcine blood for food industrial use of permeate and retentate</title><title>Journal of food and nutrition research</title><description>In this article, we introduce the importance of blood processing for human consumption while also presenting the methodology of porcine blood membrane separation to plasma and red blood cell fractions, as well as the membrane purification after porcine blood separation. Basic analytical measurements were carried out to investigate the blood product attributes, which relate to technological and nutritional quality depending on the separation parameters. Next, we present how the relevant hydrodynamical parameters were calculated during the experiments. Membrane separation was realized by crossflow microfiltration with pore size of 0.8 μm or 1.2 μm, retentate flow rate of 200 l·h-1 or 300 l·h-1 and with transmembrane pressure of 1 × 105 Pa, 2 × 105 Pa or 3 × 105 Pa. The experimental design was analysed, the parameters of the objective function and effect sizes were estimated and the global minimum of the objective function was successfully identified. The results of this optimization can be applied in practice. The membrane separation parameters were then optimized according to a model based on the observed data. An optimum was detected within the examined factor levels and experimental conditions at the lowest transmembrane pressure and at the highest membrane pore size.</description><subject>Blood</subject><subject>Cross flow</subject><subject>Design of experiments</subject><subject>Design parameters</subject><subject>Erythrocytes</subject><subject>Experimental design</subject><subject>Flow velocity</subject><subject>Food industry</subject><subject>Industrial applications</subject><subject>Membrane separation</subject><subject>Membranes</subject><subject>Microfiltration</subject><subject>Nutritive value</subject><subject>Objective function</subject><subject>Optimization</subject><subject>Pore size</subject><subject>Separation</subject><issn>1336-8672</issn><issn>1338-4260</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNotjUtLBDEQhIMouK7-h4DngaTz9CiLL1jxol6XZNKBWWaTMcn8f8MqRVP1NU3XBdlwIewgQbPLc9aD1QauyU2tR8a01FJsyPc7nnxxCWnFxRXXppxojnTJZZz61s85Bxpz6dPDlMJaW5ncTNeK50MsJ3QNqUuBFmyYWqdbchXdXPHu37fk6_npc_c67D9e3naP-2HhXLTBaG-kQxc9wIMwUhkJLI5CcKtUEKOMnUAJ8Mxzb8FYBd4FxaIKGrgVW3L_93cp-WfF2g7HvJbUKw9guNVWdolfdYBOAg</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Csurka, Tamás</creator><creator>Varga, Áron</creator><creator>Ladányi, Márta</creator><creator>Friedrich, László Ferenc</creator><creator>Pásztor-Huszár, Klára</creator><general>Vyskumny Ustav Potravinarsky</general><scope>7QR</scope><scope>7T2</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20220101</creationdate><title>Membrane separation of porcine blood for food industrial use of permeate and retentate</title><author>Csurka, Tamás ; Varga, Áron ; Ladányi, Márta ; Friedrich, László Ferenc ; Pásztor-Huszár, Klára</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p113t-76b74aeafb22937457420fc331855d3c4f0fc2532b0b1b827852bad50f5d62183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Blood</topic><topic>Cross flow</topic><topic>Design of experiments</topic><topic>Design parameters</topic><topic>Erythrocytes</topic><topic>Experimental design</topic><topic>Flow velocity</topic><topic>Food industry</topic><topic>Industrial applications</topic><topic>Membrane separation</topic><topic>Membranes</topic><topic>Microfiltration</topic><topic>Nutritive value</topic><topic>Objective function</topic><topic>Optimization</topic><topic>Pore size</topic><topic>Separation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Csurka, Tamás</creatorcontrib><creatorcontrib>Varga, Áron</creatorcontrib><creatorcontrib>Ladányi, Márta</creatorcontrib><creatorcontrib>Friedrich, László Ferenc</creatorcontrib><creatorcontrib>Pásztor-Huszár, Klára</creatorcontrib><collection>Chemoreception Abstracts</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Journal of food and nutrition research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Csurka, Tamás</au><au>Varga, Áron</au><au>Ladányi, Márta</au><au>Friedrich, László Ferenc</au><au>Pásztor-Huszár, Klára</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Membrane separation of porcine blood for food industrial use of permeate and retentate</atitle><jtitle>Journal of food and nutrition research</jtitle><date>2022-01-01</date><risdate>2022</risdate><volume>61</volume><issue>3</issue><spage>218</spage><pages>218-</pages><issn>1336-8672</issn><eissn>1338-4260</eissn><abstract>In this article, we introduce the importance of blood processing for human consumption while also presenting the methodology of porcine blood membrane separation to plasma and red blood cell fractions, as well as the membrane purification after porcine blood separation. Basic analytical measurements were carried out to investigate the blood product attributes, which relate to technological and nutritional quality depending on the separation parameters. Next, we present how the relevant hydrodynamical parameters were calculated during the experiments. Membrane separation was realized by crossflow microfiltration with pore size of 0.8 μm or 1.2 μm, retentate flow rate of 200 l·h-1 or 300 l·h-1 and with transmembrane pressure of 1 × 105 Pa, 2 × 105 Pa or 3 × 105 Pa. The experimental design was analysed, the parameters of the objective function and effect sizes were estimated and the global minimum of the objective function was successfully identified. The results of this optimization can be applied in practice. The membrane separation parameters were then optimized according to a model based on the observed data. An optimum was detected within the examined factor levels and experimental conditions at the lowest transmembrane pressure and at the highest membrane pore size.</abstract><cop>Bratislava</cop><pub>Vyskumny Ustav Potravinarsky</pub></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1336-8672 |
ispartof | Journal of food and nutrition research, 2022-01, Vol.61 (3), p.218 |
issn | 1336-8672 1338-4260 |
language | eng |
recordid | cdi_proquest_journals_2718684848 |
source | EZB-FREE-00999 freely available EZB journals |
subjects | Blood Cross flow Design of experiments Design parameters Erythrocytes Experimental design Flow velocity Food industry Industrial applications Membrane separation Membranes Microfiltration Nutritive value Objective function Optimization Pore size Separation |
title | Membrane separation of porcine blood for food industrial use of permeate and retentate |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T13%3A42%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Membrane%20separation%20of%20porcine%20blood%20for%20food%20industrial%20use%20of%20permeate%20and%20retentate&rft.jtitle=Journal%20of%20food%20and%20nutrition%20research&rft.au=Csurka,%20Tam%C3%A1s&rft.date=2022-01-01&rft.volume=61&rft.issue=3&rft.spage=218&rft.pages=218-&rft.issn=1336-8672&rft.eissn=1338-4260&rft_id=info:doi/&rft_dat=%3Cproquest%3E2718684848%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2718684848&rft_id=info:pmid/&rfr_iscdi=true |