A simplified gravitational reference sensor for satellite geodesy

A simplified gravitational reference sensor (S-GRS) is an ultra-precise inertial sensor for future Earth geodesy missions. These sensors measure or compensate for all non-gravitational accelerations of the host spacecraft to remove them in the data analysis and recover spacecraft motion due to Earth...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geodesy 2022-10, Vol.96 (10), Article 70
Hauptverfasser: Dávila Álvarez, Anthony, Knudtson, Aaron, Patel, Unmil, Gleason, Joseph, Hollis, Harold, Sanjuan, Jose, Doughty, Neil, McDaniel, Glenn, Lee, Jennifer, Leitch, James, Bennett, Stephen, Bevilacqua, Riccardo, Mueller, Guido, Spero, Robert, Ware, Brent, Wass, Peter, Wiese, David, Ziemer, John, Conklin, John W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 10
container_start_page
container_title Journal of geodesy
container_volume 96
creator Dávila Álvarez, Anthony
Knudtson, Aaron
Patel, Unmil
Gleason, Joseph
Hollis, Harold
Sanjuan, Jose
Doughty, Neil
McDaniel, Glenn
Lee, Jennifer
Leitch, James
Bennett, Stephen
Bevilacqua, Riccardo
Mueller, Guido
Spero, Robert
Ware, Brent
Wass, Peter
Wiese, David
Ziemer, John
Conklin, John W.
description A simplified gravitational reference sensor (S-GRS) is an ultra-precise inertial sensor for future Earth geodesy missions. These sensors measure or compensate for all non-gravitational accelerations of the host spacecraft to remove them in the data analysis and recover spacecraft motion due to Earth’s gravity field. Low–low satellite-to-satellite tracking missions like GRACE-FO that use laser ranging interferometers (LRI) are limited by the acceleration noise performance of their electrostatic accelerometers and temporal aliasing associated with Earth’s gravity field. The current accelerometers, used in the GRACE missions, have a limited sensitivity of ∼ 10 - 10 m/s 2 /Hz 1 / 2 around 1 mHz. The S-GRS is estimated to be at least 40 times more sensitive than the GRACE accelerometers and over 500 times more sensitive if operated on a drag-compensated platform. This improvement is enabled by increasing the mass of the sensor’s test mass, increasing the gap between the test mass and its electrode housing, removing the grounding wire used in GRACE, and replacing it with a UV LED-based charge management system. This allows future missions to take advantage of the sensitivity of the GRACE-FO LRI in the gravity recovery analysis. The S-GRS concept is a simplified version of the flight-proven LISA Pathfinder (LPF) GRS. Performance estimates are based on models vetted during the LPF flight and the expected spacecraft environment based on GRACE-FO data. The relatively low volume ( ∼ 10 4  cm 3 ), mass ( ∼  13 kg), and power ( ∼  20 W) enable the use of S-GRS on microsatellites, reducing launch costs and allowing more satellite pairs to improve the temporal resolution of gravity field maps. The S-GRS design and analysis, as well as its gravity recovery performance in two candidate mission architectures, are discussed in this article.
doi_str_mv 10.1007/s00190-022-01659-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2718668707</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2718668707</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-42e493ebf5581ae5527e12998fad792157ca2d44b5e1f27962f7ca9f080e78db3</originalsourceid><addsrcrecordid>eNp9kMFKAzEQhoMoWKsv4GnBc3Qmm2w2x1LUCgUveg7p7qSkbHdrshX69kZX8OZhGBi-f5j5GLtFuEcA_ZAA0AAHIThgpQyHMzZDWQqOpZHnbAZGGq41ykt2ldIu41rV1YwtFkUK-0MXfKC22Eb3GUY3hqF3XRHJU6S-oSJRn4ZY-FzJjdR1YaRiS0NL6XTNLrzrEt389jl7f3p8W674-vX5ZblY86ZEM3IpSJqSNl6pGh0pJTShMKb2rtVGoNKNE62UG0XohTaV8HliPNRAum435ZzdTXsPcfg4UhrtbjjGfGeyQmNdVbUGnSkxUU0cUsof2EMMexdPFsF-q7KTKptV2R9VFnKonEIpw_2W4t_qf1Jfz9tryA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2718668707</pqid></control><display><type>article</type><title>A simplified gravitational reference sensor for satellite geodesy</title><source>SpringerLink Journals</source><creator>Dávila Álvarez, Anthony ; Knudtson, Aaron ; Patel, Unmil ; Gleason, Joseph ; Hollis, Harold ; Sanjuan, Jose ; Doughty, Neil ; McDaniel, Glenn ; Lee, Jennifer ; Leitch, James ; Bennett, Stephen ; Bevilacqua, Riccardo ; Mueller, Guido ; Spero, Robert ; Ware, Brent ; Wass, Peter ; Wiese, David ; Ziemer, John ; Conklin, John W.</creator><creatorcontrib>Dávila Álvarez, Anthony ; Knudtson, Aaron ; Patel, Unmil ; Gleason, Joseph ; Hollis, Harold ; Sanjuan, Jose ; Doughty, Neil ; McDaniel, Glenn ; Lee, Jennifer ; Leitch, James ; Bennett, Stephen ; Bevilacqua, Riccardo ; Mueller, Guido ; Spero, Robert ; Ware, Brent ; Wass, Peter ; Wiese, David ; Ziemer, John ; Conklin, John W.</creatorcontrib><description>A simplified gravitational reference sensor (S-GRS) is an ultra-precise inertial sensor for future Earth geodesy missions. These sensors measure or compensate for all non-gravitational accelerations of the host spacecraft to remove them in the data analysis and recover spacecraft motion due to Earth’s gravity field. Low–low satellite-to-satellite tracking missions like GRACE-FO that use laser ranging interferometers (LRI) are limited by the acceleration noise performance of their electrostatic accelerometers and temporal aliasing associated with Earth’s gravity field. The current accelerometers, used in the GRACE missions, have a limited sensitivity of ∼ 10 - 10 m/s 2 /Hz 1 / 2 around 1 mHz. The S-GRS is estimated to be at least 40 times more sensitive than the GRACE accelerometers and over 500 times more sensitive if operated on a drag-compensated platform. This improvement is enabled by increasing the mass of the sensor’s test mass, increasing the gap between the test mass and its electrode housing, removing the grounding wire used in GRACE, and replacing it with a UV LED-based charge management system. This allows future missions to take advantage of the sensitivity of the GRACE-FO LRI in the gravity recovery analysis. The S-GRS concept is a simplified version of the flight-proven LISA Pathfinder (LPF) GRS. Performance estimates are based on models vetted during the LPF flight and the expected spacecraft environment based on GRACE-FO data. The relatively low volume ( ∼ 10 4  cm 3 ), mass ( ∼  13 kg), and power ( ∼  20 W) enable the use of S-GRS on microsatellites, reducing launch costs and allowing more satellite pairs to improve the temporal resolution of gravity field maps. The S-GRS design and analysis, as well as its gravity recovery performance in two candidate mission architectures, are discussed in this article.</description><identifier>ISSN: 0949-7714</identifier><identifier>EISSN: 1432-1394</identifier><identifier>DOI: 10.1007/s00190-022-01659-0</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Accelerometers ; Analysis ; Data analysis ; Earth ; Earth and Environmental Science ; Earth Sciences ; Flight ; Geodesy ; Geodetics ; Geophysics/Geodesy ; Gravity field ; Lasers ; Mass ; Meteorological satellites ; Microsatellites ; Original Article ; Recovery ; Satellite tracking ; Satellites ; Sensors ; Spacecraft</subject><ispartof>Journal of geodesy, 2022-10, Vol.96 (10), Article 70</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-42e493ebf5581ae5527e12998fad792157ca2d44b5e1f27962f7ca9f080e78db3</citedby><cites>FETCH-LOGICAL-c319t-42e493ebf5581ae5527e12998fad792157ca2d44b5e1f27962f7ca9f080e78db3</cites><orcidid>0000-0002-4552-4030</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00190-022-01659-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00190-022-01659-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Dávila Álvarez, Anthony</creatorcontrib><creatorcontrib>Knudtson, Aaron</creatorcontrib><creatorcontrib>Patel, Unmil</creatorcontrib><creatorcontrib>Gleason, Joseph</creatorcontrib><creatorcontrib>Hollis, Harold</creatorcontrib><creatorcontrib>Sanjuan, Jose</creatorcontrib><creatorcontrib>Doughty, Neil</creatorcontrib><creatorcontrib>McDaniel, Glenn</creatorcontrib><creatorcontrib>Lee, Jennifer</creatorcontrib><creatorcontrib>Leitch, James</creatorcontrib><creatorcontrib>Bennett, Stephen</creatorcontrib><creatorcontrib>Bevilacqua, Riccardo</creatorcontrib><creatorcontrib>Mueller, Guido</creatorcontrib><creatorcontrib>Spero, Robert</creatorcontrib><creatorcontrib>Ware, Brent</creatorcontrib><creatorcontrib>Wass, Peter</creatorcontrib><creatorcontrib>Wiese, David</creatorcontrib><creatorcontrib>Ziemer, John</creatorcontrib><creatorcontrib>Conklin, John W.</creatorcontrib><title>A simplified gravitational reference sensor for satellite geodesy</title><title>Journal of geodesy</title><addtitle>J Geod</addtitle><description>A simplified gravitational reference sensor (S-GRS) is an ultra-precise inertial sensor for future Earth geodesy missions. These sensors measure or compensate for all non-gravitational accelerations of the host spacecraft to remove them in the data analysis and recover spacecraft motion due to Earth’s gravity field. Low–low satellite-to-satellite tracking missions like GRACE-FO that use laser ranging interferometers (LRI) are limited by the acceleration noise performance of their electrostatic accelerometers and temporal aliasing associated with Earth’s gravity field. The current accelerometers, used in the GRACE missions, have a limited sensitivity of ∼ 10 - 10 m/s 2 /Hz 1 / 2 around 1 mHz. The S-GRS is estimated to be at least 40 times more sensitive than the GRACE accelerometers and over 500 times more sensitive if operated on a drag-compensated platform. This improvement is enabled by increasing the mass of the sensor’s test mass, increasing the gap between the test mass and its electrode housing, removing the grounding wire used in GRACE, and replacing it with a UV LED-based charge management system. This allows future missions to take advantage of the sensitivity of the GRACE-FO LRI in the gravity recovery analysis. The S-GRS concept is a simplified version of the flight-proven LISA Pathfinder (LPF) GRS. Performance estimates are based on models vetted during the LPF flight and the expected spacecraft environment based on GRACE-FO data. The relatively low volume ( ∼ 10 4  cm 3 ), mass ( ∼  13 kg), and power ( ∼  20 W) enable the use of S-GRS on microsatellites, reducing launch costs and allowing more satellite pairs to improve the temporal resolution of gravity field maps. The S-GRS design and analysis, as well as its gravity recovery performance in two candidate mission architectures, are discussed in this article.</description><subject>Accelerometers</subject><subject>Analysis</subject><subject>Data analysis</subject><subject>Earth</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Flight</subject><subject>Geodesy</subject><subject>Geodetics</subject><subject>Geophysics/Geodesy</subject><subject>Gravity field</subject><subject>Lasers</subject><subject>Mass</subject><subject>Meteorological satellites</subject><subject>Microsatellites</subject><subject>Original Article</subject><subject>Recovery</subject><subject>Satellite tracking</subject><subject>Satellites</subject><subject>Sensors</subject><subject>Spacecraft</subject><issn>0949-7714</issn><issn>1432-1394</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKAzEQhoMoWKsv4GnBc3Qmm2w2x1LUCgUveg7p7qSkbHdrshX69kZX8OZhGBi-f5j5GLtFuEcA_ZAA0AAHIThgpQyHMzZDWQqOpZHnbAZGGq41ykt2ldIu41rV1YwtFkUK-0MXfKC22Eb3GUY3hqF3XRHJU6S-oSJRn4ZY-FzJjdR1YaRiS0NL6XTNLrzrEt389jl7f3p8W674-vX5ZblY86ZEM3IpSJqSNl6pGh0pJTShMKb2rtVGoNKNE62UG0XohTaV8HliPNRAum435ZzdTXsPcfg4UhrtbjjGfGeyQmNdVbUGnSkxUU0cUsof2EMMexdPFsF-q7KTKptV2R9VFnKonEIpw_2W4t_qf1Jfz9tryA</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Dávila Álvarez, Anthony</creator><creator>Knudtson, Aaron</creator><creator>Patel, Unmil</creator><creator>Gleason, Joseph</creator><creator>Hollis, Harold</creator><creator>Sanjuan, Jose</creator><creator>Doughty, Neil</creator><creator>McDaniel, Glenn</creator><creator>Lee, Jennifer</creator><creator>Leitch, James</creator><creator>Bennett, Stephen</creator><creator>Bevilacqua, Riccardo</creator><creator>Mueller, Guido</creator><creator>Spero, Robert</creator><creator>Ware, Brent</creator><creator>Wass, Peter</creator><creator>Wiese, David</creator><creator>Ziemer, John</creator><creator>Conklin, John W.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><orcidid>https://orcid.org/0000-0002-4552-4030</orcidid></search><sort><creationdate>20221001</creationdate><title>A simplified gravitational reference sensor for satellite geodesy</title><author>Dávila Álvarez, Anthony ; Knudtson, Aaron ; Patel, Unmil ; Gleason, Joseph ; Hollis, Harold ; Sanjuan, Jose ; Doughty, Neil ; McDaniel, Glenn ; Lee, Jennifer ; Leitch, James ; Bennett, Stephen ; Bevilacqua, Riccardo ; Mueller, Guido ; Spero, Robert ; Ware, Brent ; Wass, Peter ; Wiese, David ; Ziemer, John ; Conklin, John W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-42e493ebf5581ae5527e12998fad792157ca2d44b5e1f27962f7ca9f080e78db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accelerometers</topic><topic>Analysis</topic><topic>Data analysis</topic><topic>Earth</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Flight</topic><topic>Geodesy</topic><topic>Geodetics</topic><topic>Geophysics/Geodesy</topic><topic>Gravity field</topic><topic>Lasers</topic><topic>Mass</topic><topic>Meteorological satellites</topic><topic>Microsatellites</topic><topic>Original Article</topic><topic>Recovery</topic><topic>Satellite tracking</topic><topic>Satellites</topic><topic>Sensors</topic><topic>Spacecraft</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dávila Álvarez, Anthony</creatorcontrib><creatorcontrib>Knudtson, Aaron</creatorcontrib><creatorcontrib>Patel, Unmil</creatorcontrib><creatorcontrib>Gleason, Joseph</creatorcontrib><creatorcontrib>Hollis, Harold</creatorcontrib><creatorcontrib>Sanjuan, Jose</creatorcontrib><creatorcontrib>Doughty, Neil</creatorcontrib><creatorcontrib>McDaniel, Glenn</creatorcontrib><creatorcontrib>Lee, Jennifer</creatorcontrib><creatorcontrib>Leitch, James</creatorcontrib><creatorcontrib>Bennett, Stephen</creatorcontrib><creatorcontrib>Bevilacqua, Riccardo</creatorcontrib><creatorcontrib>Mueller, Guido</creatorcontrib><creatorcontrib>Spero, Robert</creatorcontrib><creatorcontrib>Ware, Brent</creatorcontrib><creatorcontrib>Wass, Peter</creatorcontrib><creatorcontrib>Wiese, David</creatorcontrib><creatorcontrib>Ziemer, John</creatorcontrib><creatorcontrib>Conklin, John W.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Journal of geodesy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dávila Álvarez, Anthony</au><au>Knudtson, Aaron</au><au>Patel, Unmil</au><au>Gleason, Joseph</au><au>Hollis, Harold</au><au>Sanjuan, Jose</au><au>Doughty, Neil</au><au>McDaniel, Glenn</au><au>Lee, Jennifer</au><au>Leitch, James</au><au>Bennett, Stephen</au><au>Bevilacqua, Riccardo</au><au>Mueller, Guido</au><au>Spero, Robert</au><au>Ware, Brent</au><au>Wass, Peter</au><au>Wiese, David</au><au>Ziemer, John</au><au>Conklin, John W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A simplified gravitational reference sensor for satellite geodesy</atitle><jtitle>Journal of geodesy</jtitle><stitle>J Geod</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>96</volume><issue>10</issue><artnum>70</artnum><issn>0949-7714</issn><eissn>1432-1394</eissn><abstract>A simplified gravitational reference sensor (S-GRS) is an ultra-precise inertial sensor for future Earth geodesy missions. These sensors measure or compensate for all non-gravitational accelerations of the host spacecraft to remove them in the data analysis and recover spacecraft motion due to Earth’s gravity field. Low–low satellite-to-satellite tracking missions like GRACE-FO that use laser ranging interferometers (LRI) are limited by the acceleration noise performance of their electrostatic accelerometers and temporal aliasing associated with Earth’s gravity field. The current accelerometers, used in the GRACE missions, have a limited sensitivity of ∼ 10 - 10 m/s 2 /Hz 1 / 2 around 1 mHz. The S-GRS is estimated to be at least 40 times more sensitive than the GRACE accelerometers and over 500 times more sensitive if operated on a drag-compensated platform. This improvement is enabled by increasing the mass of the sensor’s test mass, increasing the gap between the test mass and its electrode housing, removing the grounding wire used in GRACE, and replacing it with a UV LED-based charge management system. This allows future missions to take advantage of the sensitivity of the GRACE-FO LRI in the gravity recovery analysis. The S-GRS concept is a simplified version of the flight-proven LISA Pathfinder (LPF) GRS. Performance estimates are based on models vetted during the LPF flight and the expected spacecraft environment based on GRACE-FO data. The relatively low volume ( ∼ 10 4  cm 3 ), mass ( ∼  13 kg), and power ( ∼  20 W) enable the use of S-GRS on microsatellites, reducing launch costs and allowing more satellite pairs to improve the temporal resolution of gravity field maps. The S-GRS design and analysis, as well as its gravity recovery performance in two candidate mission architectures, are discussed in this article.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00190-022-01659-0</doi><orcidid>https://orcid.org/0000-0002-4552-4030</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0949-7714
ispartof Journal of geodesy, 2022-10, Vol.96 (10), Article 70
issn 0949-7714
1432-1394
language eng
recordid cdi_proquest_journals_2718668707
source SpringerLink Journals
subjects Accelerometers
Analysis
Data analysis
Earth
Earth and Environmental Science
Earth Sciences
Flight
Geodesy
Geodetics
Geophysics/Geodesy
Gravity field
Lasers
Mass
Meteorological satellites
Microsatellites
Original Article
Recovery
Satellite tracking
Satellites
Sensors
Spacecraft
title A simplified gravitational reference sensor for satellite geodesy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T00%3A46%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20simplified%20gravitational%20reference%20sensor%20for%20satellite%20geodesy&rft.jtitle=Journal%20of%20geodesy&rft.au=D%C3%A1vila%20%C3%81lvarez,%20Anthony&rft.date=2022-10-01&rft.volume=96&rft.issue=10&rft.artnum=70&rft.issn=0949-7714&rft.eissn=1432-1394&rft_id=info:doi/10.1007/s00190-022-01659-0&rft_dat=%3Cproquest_cross%3E2718668707%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2718668707&rft_id=info:pmid/&rfr_iscdi=true