Chemically active filaments: analysis and extensions of slender phoretic theory
Autophoretic microswimmers self-propel via surface interactions with a surrounding solute fuel. Chemically-active filaments are an exciting new microswimmer design that augments traditional autophoretic microswimmers, such as spherical Janus particles, with extra functionality inherent to their slen...
Gespeichert in:
Veröffentlicht in: | Soft matter 2022-09, Vol.18 (37), p.751-763 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 763 |
---|---|
container_issue | 37 |
container_start_page | 751 |
container_title | Soft matter |
container_volume | 18 |
creator | Katsamba, Panayiota Butler, Matthew D Koens, Lyndon Montenegro-Johnson, Thomas D |
description | Autophoretic microswimmers self-propel
via
surface interactions with a surrounding solute fuel. Chemically-active filaments are an exciting new microswimmer design that augments traditional autophoretic microswimmers, such as spherical Janus particles, with extra functionality inherent to their slender filament geometry. Slender Phoretic Theory (SPT) was developed by Katsamba
et al.
to analyse the dynamics of chemically-active filaments with arbitrary three-dimensional shape and chemical patterning. SPT provides a line integral solution for the solute concentration field and slip velocity on the filament surface. In this work, we exploit the generality of SPT to calculate a number of new, non-trivial analytical solutions for slender autophoretic microswimmers, including a general series solution for phoretic filaments with arbitrary geometry and surface chemistry, a universal solution for filaments with a straight centreline, and explicit solutions for some canonical shapes useful for practical applications and benchmarking numerical code. Many common autophoretic particle designs include discrete jumps in surface chemistry; here we extend our SPT to handle such discontinuities, showing that they are regularised by a boundary layer around the jump. Since our underlying framework is linear, combinations of our results provide a library of analytic solutions that will allow researchers to probe the interplay of activity patterning and shape.
Fantastic fun finding functional forms for phoretic filaments. |
doi_str_mv | 10.1039/d2sm00942k |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2718549923</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2709019728</sourcerecordid><originalsourceid>FETCH-LOGICAL-c280t-11a1cf110819d1a9503d56c5e867af4c6868de78f54a198966d8e37d56747b373</originalsourceid><addsrcrecordid>eNpd0EtLAzEUBeAgCtbqxr0QcCNCNZlk8nAn9YmVLlRwN8TMHZqamdRkKs6_d2qlgqt7Fh8H7kHokJIzSpg-L7NUE6J59r6FBlRyPhKKq-1NZq-7aC-lOSFMcSoGaDqeQe2s8b7DxrbuE3DlvKmhadMFNo3xXXKpDyWGrxaa5EKTcKhw8tCUEPFiFiK0zuJ2BiF2-2inMj7Bwe8dopeb6-fx3Wgyvb0fX05GNlOkHVFqqK0oJYrqkhqdE1bmwuaghDQVt0IJVYJUVc4N1UoLUSpgsjeSyzcm2RCdrHsXMXwsIbVF7ZIF700DYZmKTBJNqJaZ6unxPzoPy9h_tlJU5VzrjPXqdK1sDClFqIpFdLWJXUFJsdq2uMqeHn-2fejx0RrHZDfub3v2DboQdWQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2718549923</pqid></control><display><type>article</type><title>Chemically active filaments: analysis and extensions of slender phoretic theory</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Katsamba, Panayiota ; Butler, Matthew D ; Koens, Lyndon ; Montenegro-Johnson, Thomas D</creator><creatorcontrib>Katsamba, Panayiota ; Butler, Matthew D ; Koens, Lyndon ; Montenegro-Johnson, Thomas D</creatorcontrib><description>Autophoretic microswimmers self-propel
via
surface interactions with a surrounding solute fuel. Chemically-active filaments are an exciting new microswimmer design that augments traditional autophoretic microswimmers, such as spherical Janus particles, with extra functionality inherent to their slender filament geometry. Slender Phoretic Theory (SPT) was developed by Katsamba
et al.
to analyse the dynamics of chemically-active filaments with arbitrary three-dimensional shape and chemical patterning. SPT provides a line integral solution for the solute concentration field and slip velocity on the filament surface. In this work, we exploit the generality of SPT to calculate a number of new, non-trivial analytical solutions for slender autophoretic microswimmers, including a general series solution for phoretic filaments with arbitrary geometry and surface chemistry, a universal solution for filaments with a straight centreline, and explicit solutions for some canonical shapes useful for practical applications and benchmarking numerical code. Many common autophoretic particle designs include discrete jumps in surface chemistry; here we extend our SPT to handle such discontinuities, showing that they are regularised by a boundary layer around the jump. Since our underlying framework is linear, combinations of our results provide a library of analytic solutions that will allow researchers to probe the interplay of activity patterning and shape.
Fantastic fun finding functional forms for phoretic filaments.</description><identifier>ISSN: 1744-683X</identifier><identifier>EISSN: 1744-6848</identifier><identifier>DOI: 10.1039/d2sm00942k</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Boundary layers ; Exact solutions ; Filaments ; Nanoparticles ; Slip velocity ; Surface chemistry</subject><ispartof>Soft matter, 2022-09, Vol.18 (37), p.751-763</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c280t-11a1cf110819d1a9503d56c5e867af4c6868de78f54a198966d8e37d56747b373</citedby><cites>FETCH-LOGICAL-c280t-11a1cf110819d1a9503d56c5e867af4c6868de78f54a198966d8e37d56747b373</cites><orcidid>0000-0002-7110-163X ; 0000-0002-9370-7720 ; 0000-0001-6328-3018 ; 0000-0003-2059-8268</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Katsamba, Panayiota</creatorcontrib><creatorcontrib>Butler, Matthew D</creatorcontrib><creatorcontrib>Koens, Lyndon</creatorcontrib><creatorcontrib>Montenegro-Johnson, Thomas D</creatorcontrib><title>Chemically active filaments: analysis and extensions of slender phoretic theory</title><title>Soft matter</title><description>Autophoretic microswimmers self-propel
via
surface interactions with a surrounding solute fuel. Chemically-active filaments are an exciting new microswimmer design that augments traditional autophoretic microswimmers, such as spherical Janus particles, with extra functionality inherent to their slender filament geometry. Slender Phoretic Theory (SPT) was developed by Katsamba
et al.
to analyse the dynamics of chemically-active filaments with arbitrary three-dimensional shape and chemical patterning. SPT provides a line integral solution for the solute concentration field and slip velocity on the filament surface. In this work, we exploit the generality of SPT to calculate a number of new, non-trivial analytical solutions for slender autophoretic microswimmers, including a general series solution for phoretic filaments with arbitrary geometry and surface chemistry, a universal solution for filaments with a straight centreline, and explicit solutions for some canonical shapes useful for practical applications and benchmarking numerical code. Many common autophoretic particle designs include discrete jumps in surface chemistry; here we extend our SPT to handle such discontinuities, showing that they are regularised by a boundary layer around the jump. Since our underlying framework is linear, combinations of our results provide a library of analytic solutions that will allow researchers to probe the interplay of activity patterning and shape.
Fantastic fun finding functional forms for phoretic filaments.</description><subject>Boundary layers</subject><subject>Exact solutions</subject><subject>Filaments</subject><subject>Nanoparticles</subject><subject>Slip velocity</subject><subject>Surface chemistry</subject><issn>1744-683X</issn><issn>1744-6848</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpd0EtLAzEUBeAgCtbqxr0QcCNCNZlk8nAn9YmVLlRwN8TMHZqamdRkKs6_d2qlgqt7Fh8H7kHokJIzSpg-L7NUE6J59r6FBlRyPhKKq-1NZq-7aC-lOSFMcSoGaDqeQe2s8b7DxrbuE3DlvKmhadMFNo3xXXKpDyWGrxaa5EKTcKhw8tCUEPFiFiK0zuJ2BiF2-2inMj7Bwe8dopeb6-fx3Wgyvb0fX05GNlOkHVFqqK0oJYrqkhqdE1bmwuaghDQVt0IJVYJUVc4N1UoLUSpgsjeSyzcm2RCdrHsXMXwsIbVF7ZIF700DYZmKTBJNqJaZ6unxPzoPy9h_tlJU5VzrjPXqdK1sDClFqIpFdLWJXUFJsdq2uMqeHn-2fejx0RrHZDfub3v2DboQdWQ</recordid><startdate>20220928</startdate><enddate>20220928</enddate><creator>Katsamba, Panayiota</creator><creator>Butler, Matthew D</creator><creator>Koens, Lyndon</creator><creator>Montenegro-Johnson, Thomas D</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7110-163X</orcidid><orcidid>https://orcid.org/0000-0002-9370-7720</orcidid><orcidid>https://orcid.org/0000-0001-6328-3018</orcidid><orcidid>https://orcid.org/0000-0003-2059-8268</orcidid></search><sort><creationdate>20220928</creationdate><title>Chemically active filaments: analysis and extensions of slender phoretic theory</title><author>Katsamba, Panayiota ; Butler, Matthew D ; Koens, Lyndon ; Montenegro-Johnson, Thomas D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c280t-11a1cf110819d1a9503d56c5e867af4c6868de78f54a198966d8e37d56747b373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Boundary layers</topic><topic>Exact solutions</topic><topic>Filaments</topic><topic>Nanoparticles</topic><topic>Slip velocity</topic><topic>Surface chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Katsamba, Panayiota</creatorcontrib><creatorcontrib>Butler, Matthew D</creatorcontrib><creatorcontrib>Koens, Lyndon</creatorcontrib><creatorcontrib>Montenegro-Johnson, Thomas D</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Soft matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Katsamba, Panayiota</au><au>Butler, Matthew D</au><au>Koens, Lyndon</au><au>Montenegro-Johnson, Thomas D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chemically active filaments: analysis and extensions of slender phoretic theory</atitle><jtitle>Soft matter</jtitle><date>2022-09-28</date><risdate>2022</risdate><volume>18</volume><issue>37</issue><spage>751</spage><epage>763</epage><pages>751-763</pages><issn>1744-683X</issn><eissn>1744-6848</eissn><abstract>Autophoretic microswimmers self-propel
via
surface interactions with a surrounding solute fuel. Chemically-active filaments are an exciting new microswimmer design that augments traditional autophoretic microswimmers, such as spherical Janus particles, with extra functionality inherent to their slender filament geometry. Slender Phoretic Theory (SPT) was developed by Katsamba
et al.
to analyse the dynamics of chemically-active filaments with arbitrary three-dimensional shape and chemical patterning. SPT provides a line integral solution for the solute concentration field and slip velocity on the filament surface. In this work, we exploit the generality of SPT to calculate a number of new, non-trivial analytical solutions for slender autophoretic microswimmers, including a general series solution for phoretic filaments with arbitrary geometry and surface chemistry, a universal solution for filaments with a straight centreline, and explicit solutions for some canonical shapes useful for practical applications and benchmarking numerical code. Many common autophoretic particle designs include discrete jumps in surface chemistry; here we extend our SPT to handle such discontinuities, showing that they are regularised by a boundary layer around the jump. Since our underlying framework is linear, combinations of our results provide a library of analytic solutions that will allow researchers to probe the interplay of activity patterning and shape.
Fantastic fun finding functional forms for phoretic filaments.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d2sm00942k</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-7110-163X</orcidid><orcidid>https://orcid.org/0000-0002-9370-7720</orcidid><orcidid>https://orcid.org/0000-0001-6328-3018</orcidid><orcidid>https://orcid.org/0000-0003-2059-8268</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1744-683X |
ispartof | Soft matter, 2022-09, Vol.18 (37), p.751-763 |
issn | 1744-683X 1744-6848 |
language | eng |
recordid | cdi_proquest_journals_2718549923 |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Boundary layers Exact solutions Filaments Nanoparticles Slip velocity Surface chemistry |
title | Chemically active filaments: analysis and extensions of slender phoretic theory |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T08%3A35%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chemically%20active%20filaments:%20analysis%20and%20extensions%20of%20slender%20phoretic%20theory&rft.jtitle=Soft%20matter&rft.au=Katsamba,%20Panayiota&rft.date=2022-09-28&rft.volume=18&rft.issue=37&rft.spage=751&rft.epage=763&rft.pages=751-763&rft.issn=1744-683X&rft.eissn=1744-6848&rft_id=info:doi/10.1039/d2sm00942k&rft_dat=%3Cproquest_cross%3E2709019728%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2718549923&rft_id=info:pmid/&rfr_iscdi=true |