Chemically active filaments: analysis and extensions of slender phoretic theory

Autophoretic microswimmers self-propel via surface interactions with a surrounding solute fuel. Chemically-active filaments are an exciting new microswimmer design that augments traditional autophoretic microswimmers, such as spherical Janus particles, with extra functionality inherent to their slen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soft matter 2022-09, Vol.18 (37), p.751-763
Hauptverfasser: Katsamba, Panayiota, Butler, Matthew D, Koens, Lyndon, Montenegro-Johnson, Thomas D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 763
container_issue 37
container_start_page 751
container_title Soft matter
container_volume 18
creator Katsamba, Panayiota
Butler, Matthew D
Koens, Lyndon
Montenegro-Johnson, Thomas D
description Autophoretic microswimmers self-propel via surface interactions with a surrounding solute fuel. Chemically-active filaments are an exciting new microswimmer design that augments traditional autophoretic microswimmers, such as spherical Janus particles, with extra functionality inherent to their slender filament geometry. Slender Phoretic Theory (SPT) was developed by Katsamba et al. to analyse the dynamics of chemically-active filaments with arbitrary three-dimensional shape and chemical patterning. SPT provides a line integral solution for the solute concentration field and slip velocity on the filament surface. In this work, we exploit the generality of SPT to calculate a number of new, non-trivial analytical solutions for slender autophoretic microswimmers, including a general series solution for phoretic filaments with arbitrary geometry and surface chemistry, a universal solution for filaments with a straight centreline, and explicit solutions for some canonical shapes useful for practical applications and benchmarking numerical code. Many common autophoretic particle designs include discrete jumps in surface chemistry; here we extend our SPT to handle such discontinuities, showing that they are regularised by a boundary layer around the jump. Since our underlying framework is linear, combinations of our results provide a library of analytic solutions that will allow researchers to probe the interplay of activity patterning and shape. Fantastic fun finding functional forms for phoretic filaments.
doi_str_mv 10.1039/d2sm00942k
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2718549923</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2709019728</sourcerecordid><originalsourceid>FETCH-LOGICAL-c280t-11a1cf110819d1a9503d56c5e867af4c6868de78f54a198966d8e37d56747b373</originalsourceid><addsrcrecordid>eNpd0EtLAzEUBeAgCtbqxr0QcCNCNZlk8nAn9YmVLlRwN8TMHZqamdRkKs6_d2qlgqt7Fh8H7kHokJIzSpg-L7NUE6J59r6FBlRyPhKKq-1NZq-7aC-lOSFMcSoGaDqeQe2s8b7DxrbuE3DlvKmhadMFNo3xXXKpDyWGrxaa5EKTcKhw8tCUEPFiFiK0zuJ2BiF2-2inMj7Bwe8dopeb6-fx3Wgyvb0fX05GNlOkHVFqqK0oJYrqkhqdE1bmwuaghDQVt0IJVYJUVc4N1UoLUSpgsjeSyzcm2RCdrHsXMXwsIbVF7ZIF700DYZmKTBJNqJaZ6unxPzoPy9h_tlJU5VzrjPXqdK1sDClFqIpFdLWJXUFJsdq2uMqeHn-2fejx0RrHZDfub3v2DboQdWQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2718549923</pqid></control><display><type>article</type><title>Chemically active filaments: analysis and extensions of slender phoretic theory</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Katsamba, Panayiota ; Butler, Matthew D ; Koens, Lyndon ; Montenegro-Johnson, Thomas D</creator><creatorcontrib>Katsamba, Panayiota ; Butler, Matthew D ; Koens, Lyndon ; Montenegro-Johnson, Thomas D</creatorcontrib><description>Autophoretic microswimmers self-propel via surface interactions with a surrounding solute fuel. Chemically-active filaments are an exciting new microswimmer design that augments traditional autophoretic microswimmers, such as spherical Janus particles, with extra functionality inherent to their slender filament geometry. Slender Phoretic Theory (SPT) was developed by Katsamba et al. to analyse the dynamics of chemically-active filaments with arbitrary three-dimensional shape and chemical patterning. SPT provides a line integral solution for the solute concentration field and slip velocity on the filament surface. In this work, we exploit the generality of SPT to calculate a number of new, non-trivial analytical solutions for slender autophoretic microswimmers, including a general series solution for phoretic filaments with arbitrary geometry and surface chemistry, a universal solution for filaments with a straight centreline, and explicit solutions for some canonical shapes useful for practical applications and benchmarking numerical code. Many common autophoretic particle designs include discrete jumps in surface chemistry; here we extend our SPT to handle such discontinuities, showing that they are regularised by a boundary layer around the jump. Since our underlying framework is linear, combinations of our results provide a library of analytic solutions that will allow researchers to probe the interplay of activity patterning and shape. Fantastic fun finding functional forms for phoretic filaments.</description><identifier>ISSN: 1744-683X</identifier><identifier>EISSN: 1744-6848</identifier><identifier>DOI: 10.1039/d2sm00942k</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Boundary layers ; Exact solutions ; Filaments ; Nanoparticles ; Slip velocity ; Surface chemistry</subject><ispartof>Soft matter, 2022-09, Vol.18 (37), p.751-763</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c280t-11a1cf110819d1a9503d56c5e867af4c6868de78f54a198966d8e37d56747b373</citedby><cites>FETCH-LOGICAL-c280t-11a1cf110819d1a9503d56c5e867af4c6868de78f54a198966d8e37d56747b373</cites><orcidid>0000-0002-7110-163X ; 0000-0002-9370-7720 ; 0000-0001-6328-3018 ; 0000-0003-2059-8268</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Katsamba, Panayiota</creatorcontrib><creatorcontrib>Butler, Matthew D</creatorcontrib><creatorcontrib>Koens, Lyndon</creatorcontrib><creatorcontrib>Montenegro-Johnson, Thomas D</creatorcontrib><title>Chemically active filaments: analysis and extensions of slender phoretic theory</title><title>Soft matter</title><description>Autophoretic microswimmers self-propel via surface interactions with a surrounding solute fuel. Chemically-active filaments are an exciting new microswimmer design that augments traditional autophoretic microswimmers, such as spherical Janus particles, with extra functionality inherent to their slender filament geometry. Slender Phoretic Theory (SPT) was developed by Katsamba et al. to analyse the dynamics of chemically-active filaments with arbitrary three-dimensional shape and chemical patterning. SPT provides a line integral solution for the solute concentration field and slip velocity on the filament surface. In this work, we exploit the generality of SPT to calculate a number of new, non-trivial analytical solutions for slender autophoretic microswimmers, including a general series solution for phoretic filaments with arbitrary geometry and surface chemistry, a universal solution for filaments with a straight centreline, and explicit solutions for some canonical shapes useful for practical applications and benchmarking numerical code. Many common autophoretic particle designs include discrete jumps in surface chemistry; here we extend our SPT to handle such discontinuities, showing that they are regularised by a boundary layer around the jump. Since our underlying framework is linear, combinations of our results provide a library of analytic solutions that will allow researchers to probe the interplay of activity patterning and shape. Fantastic fun finding functional forms for phoretic filaments.</description><subject>Boundary layers</subject><subject>Exact solutions</subject><subject>Filaments</subject><subject>Nanoparticles</subject><subject>Slip velocity</subject><subject>Surface chemistry</subject><issn>1744-683X</issn><issn>1744-6848</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpd0EtLAzEUBeAgCtbqxr0QcCNCNZlk8nAn9YmVLlRwN8TMHZqamdRkKs6_d2qlgqt7Fh8H7kHokJIzSpg-L7NUE6J59r6FBlRyPhKKq-1NZq-7aC-lOSFMcSoGaDqeQe2s8b7DxrbuE3DlvKmhadMFNo3xXXKpDyWGrxaa5EKTcKhw8tCUEPFiFiK0zuJ2BiF2-2inMj7Bwe8dopeb6-fx3Wgyvb0fX05GNlOkHVFqqK0oJYrqkhqdE1bmwuaghDQVt0IJVYJUVc4N1UoLUSpgsjeSyzcm2RCdrHsXMXwsIbVF7ZIF700DYZmKTBJNqJaZ6unxPzoPy9h_tlJU5VzrjPXqdK1sDClFqIpFdLWJXUFJsdq2uMqeHn-2fejx0RrHZDfub3v2DboQdWQ</recordid><startdate>20220928</startdate><enddate>20220928</enddate><creator>Katsamba, Panayiota</creator><creator>Butler, Matthew D</creator><creator>Koens, Lyndon</creator><creator>Montenegro-Johnson, Thomas D</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7110-163X</orcidid><orcidid>https://orcid.org/0000-0002-9370-7720</orcidid><orcidid>https://orcid.org/0000-0001-6328-3018</orcidid><orcidid>https://orcid.org/0000-0003-2059-8268</orcidid></search><sort><creationdate>20220928</creationdate><title>Chemically active filaments: analysis and extensions of slender phoretic theory</title><author>Katsamba, Panayiota ; Butler, Matthew D ; Koens, Lyndon ; Montenegro-Johnson, Thomas D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c280t-11a1cf110819d1a9503d56c5e867af4c6868de78f54a198966d8e37d56747b373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Boundary layers</topic><topic>Exact solutions</topic><topic>Filaments</topic><topic>Nanoparticles</topic><topic>Slip velocity</topic><topic>Surface chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Katsamba, Panayiota</creatorcontrib><creatorcontrib>Butler, Matthew D</creatorcontrib><creatorcontrib>Koens, Lyndon</creatorcontrib><creatorcontrib>Montenegro-Johnson, Thomas D</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Soft matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Katsamba, Panayiota</au><au>Butler, Matthew D</au><au>Koens, Lyndon</au><au>Montenegro-Johnson, Thomas D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chemically active filaments: analysis and extensions of slender phoretic theory</atitle><jtitle>Soft matter</jtitle><date>2022-09-28</date><risdate>2022</risdate><volume>18</volume><issue>37</issue><spage>751</spage><epage>763</epage><pages>751-763</pages><issn>1744-683X</issn><eissn>1744-6848</eissn><abstract>Autophoretic microswimmers self-propel via surface interactions with a surrounding solute fuel. Chemically-active filaments are an exciting new microswimmer design that augments traditional autophoretic microswimmers, such as spherical Janus particles, with extra functionality inherent to their slender filament geometry. Slender Phoretic Theory (SPT) was developed by Katsamba et al. to analyse the dynamics of chemically-active filaments with arbitrary three-dimensional shape and chemical patterning. SPT provides a line integral solution for the solute concentration field and slip velocity on the filament surface. In this work, we exploit the generality of SPT to calculate a number of new, non-trivial analytical solutions for slender autophoretic microswimmers, including a general series solution for phoretic filaments with arbitrary geometry and surface chemistry, a universal solution for filaments with a straight centreline, and explicit solutions for some canonical shapes useful for practical applications and benchmarking numerical code. Many common autophoretic particle designs include discrete jumps in surface chemistry; here we extend our SPT to handle such discontinuities, showing that they are regularised by a boundary layer around the jump. Since our underlying framework is linear, combinations of our results provide a library of analytic solutions that will allow researchers to probe the interplay of activity patterning and shape. Fantastic fun finding functional forms for phoretic filaments.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d2sm00942k</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-7110-163X</orcidid><orcidid>https://orcid.org/0000-0002-9370-7720</orcidid><orcidid>https://orcid.org/0000-0001-6328-3018</orcidid><orcidid>https://orcid.org/0000-0003-2059-8268</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1744-683X
ispartof Soft matter, 2022-09, Vol.18 (37), p.751-763
issn 1744-683X
1744-6848
language eng
recordid cdi_proquest_journals_2718549923
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Boundary layers
Exact solutions
Filaments
Nanoparticles
Slip velocity
Surface chemistry
title Chemically active filaments: analysis and extensions of slender phoretic theory
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T08%3A35%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chemically%20active%20filaments:%20analysis%20and%20extensions%20of%20slender%20phoretic%20theory&rft.jtitle=Soft%20matter&rft.au=Katsamba,%20Panayiota&rft.date=2022-09-28&rft.volume=18&rft.issue=37&rft.spage=751&rft.epage=763&rft.pages=751-763&rft.issn=1744-683X&rft.eissn=1744-6848&rft_id=info:doi/10.1039/d2sm00942k&rft_dat=%3Cproquest_cross%3E2709019728%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2718549923&rft_id=info:pmid/&rfr_iscdi=true