A simple decagram-scale synthesis of an atomically dispersed, hierarchically porous Fe-N-C catalyst for acidic ORR
Carbons doped with iron and nitrogen (Fe-N-Cs) are highly promising electrocatalysts for energy conversion reactions in the oxygen, nitrogen and carbon cycles. Containing no platinum group metals, they nevertheless compete with platinum-based catalysts in crucial fuel cell reactions, such as oxygen...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2022-09, Vol.1 (37), p.19859-19867 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 19867 |
---|---|
container_issue | 37 |
container_start_page | 19859 |
container_title | Journal of materials chemistry. A, Materials for energy and sustainability |
container_volume | 1 |
creator | Koyuturk, Burak Farber, Eliyahu M Wagner, Friedrich E Fellinger, Tim-Patrick Eisenberg, David |
description | Carbons doped with iron and nitrogen (Fe-N-Cs) are highly promising electrocatalysts for energy conversion reactions in the oxygen, nitrogen and carbon cycles. Containing no platinum group metals, they nevertheless compete with platinum-based catalysts in crucial fuel cell reactions, such as oxygen reduction in acid. Yet deployment of Fe-N-Cs in fuel cells requires also a flow-enhancing pore structure, and a scalable synthesis procedure - a rarely-met combination of requirements. We now report such a simple synthesis of over 10 g of an Fe-N-C catalyst with high activity towards oxygen reduction in acid. Atomically-dispersed Fe-N
4
active sites were designed orthogonally and simultaneously with hierarchical micro-, meso- and macroporosity, by exploiting a dual role of magnesium ions during pyrolysis. Combining the "active site imprinting" and "self-templating" strategies in a single novel magnesium iminodiacetate precursor yielded a catalyst with high specific surface area (SSA > 1600 m
2
g
−1
), a flow-enhancing hierarchical porosity, and high relative abundance of the most desirable D1-type Fe-N
4
sites (43%, by Mössbauer spectroscopy at 4.2 K). Despite the relatively low iron contents, the catalysts feature halfwave potentials up to 0.70 V
vs.
RHE at pH 1 and a mass activity of 1.22 A g
−1
at 0.8 V
vs.
RHE in RDE experiments. Thanks to the simple and scalable synthesis, this active and stable catalyst may serve as a workhorse in academic and industrial research into atomically-dispersed ORR electrocatalysis.
A scalable synthesis of magnesium ion imprinted nitrogen-doped carbon allows for facile preparation of large quantities of Fe-N-C, for large-scale fuel cell research. |
doi_str_mv | 10.1039/d2ta00925k |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2718536877</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2718536877</sourcerecordid><originalsourceid>FETCH-LOGICAL-c317t-aa8acdb34e35a721a8c8eb23cc58c7243898532850fcd5ed982aed95a69f6c703</originalsourceid><addsrcrecordid>eNpFkE1LAzEQhoMoWLQX70LAm7iaTZpNcizVqlgslHpepknWpu42a7I97L832lLnMB-8z8zAi9BVTu5zwtSDoR0Qoij_OkEDSjjJxEgVp8deynM0jHFDUkhCCqUGKIxxdE1bW2yshs8ATRY1pDH2225to4vYVxi2GDrfuKTUPTYutjZEa-7w2tkAQa8PSuuD30U8tdl7NsEaOqj72OHKBwzaGafxfLG4RGcV1NEOD_UCfUyflpOXbDZ_fp2MZ5lmuegyAAnarNjIMg6C5iC1tCvKtOZSCzpiUknOqOSk0oZboySFlDkUqiq0IOwC3ezvtsF_72zsyo3fhW16WVKRp91CCpGo2z2lg48x2Kpsg2sg9GVOyl9by0e6HP_Z-pbg6z0coj5y_7azH37BdL8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2718536877</pqid></control><display><type>article</type><title>A simple decagram-scale synthesis of an atomically dispersed, hierarchically porous Fe-N-C catalyst for acidic ORR</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Koyuturk, Burak ; Farber, Eliyahu M ; Wagner, Friedrich E ; Fellinger, Tim-Patrick ; Eisenberg, David</creator><creatorcontrib>Koyuturk, Burak ; Farber, Eliyahu M ; Wagner, Friedrich E ; Fellinger, Tim-Patrick ; Eisenberg, David</creatorcontrib><description>Carbons doped with iron and nitrogen (Fe-N-Cs) are highly promising electrocatalysts for energy conversion reactions in the oxygen, nitrogen and carbon cycles. Containing no platinum group metals, they nevertheless compete with platinum-based catalysts in crucial fuel cell reactions, such as oxygen reduction in acid. Yet deployment of Fe-N-Cs in fuel cells requires also a flow-enhancing pore structure, and a scalable synthesis procedure - a rarely-met combination of requirements. We now report such a simple synthesis of over 10 g of an Fe-N-C catalyst with high activity towards oxygen reduction in acid. Atomically-dispersed Fe-N
4
active sites were designed orthogonally and simultaneously with hierarchical micro-, meso- and macroporosity, by exploiting a dual role of magnesium ions during pyrolysis. Combining the "active site imprinting" and "self-templating" strategies in a single novel magnesium iminodiacetate precursor yielded a catalyst with high specific surface area (SSA > 1600 m
2
g
−1
), a flow-enhancing hierarchical porosity, and high relative abundance of the most desirable D1-type Fe-N
4
sites (43%, by Mössbauer spectroscopy at 4.2 K). Despite the relatively low iron contents, the catalysts feature halfwave potentials up to 0.70 V
vs.
RHE at pH 1 and a mass activity of 1.22 A g
−1
at 0.8 V
vs.
RHE in RDE experiments. Thanks to the simple and scalable synthesis, this active and stable catalyst may serve as a workhorse in academic and industrial research into atomically-dispersed ORR electrocatalysis.
A scalable synthesis of magnesium ion imprinted nitrogen-doped carbon allows for facile preparation of large quantities of Fe-N-C, for large-scale fuel cell research.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d2ta00925k</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Carbon cycle ; Catalysts ; Chemical synthesis ; Dispersion ; Electrocatalysts ; Energy conversion ; Fuel cells ; Fuel technology ; Heavy metals ; Industrial research ; Iron ; Macroporosity ; Magnesium ; Mossbauer spectroscopy ; Nitrogen ; Oxygen ; Platinum ; Platinum metals ; Porosity ; Pyrolysis ; Relative abundance</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2022-09, Vol.1 (37), p.19859-19867</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c317t-aa8acdb34e35a721a8c8eb23cc58c7243898532850fcd5ed982aed95a69f6c703</citedby><cites>FETCH-LOGICAL-c317t-aa8acdb34e35a721a8c8eb23cc58c7243898532850fcd5ed982aed95a69f6c703</cites><orcidid>0000-0001-5568-337X ; 0000-0001-6332-2347 ; 0000-0001-5728-9448</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Koyuturk, Burak</creatorcontrib><creatorcontrib>Farber, Eliyahu M</creatorcontrib><creatorcontrib>Wagner, Friedrich E</creatorcontrib><creatorcontrib>Fellinger, Tim-Patrick</creatorcontrib><creatorcontrib>Eisenberg, David</creatorcontrib><title>A simple decagram-scale synthesis of an atomically dispersed, hierarchically porous Fe-N-C catalyst for acidic ORR</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Carbons doped with iron and nitrogen (Fe-N-Cs) are highly promising electrocatalysts for energy conversion reactions in the oxygen, nitrogen and carbon cycles. Containing no platinum group metals, they nevertheless compete with platinum-based catalysts in crucial fuel cell reactions, such as oxygen reduction in acid. Yet deployment of Fe-N-Cs in fuel cells requires also a flow-enhancing pore structure, and a scalable synthesis procedure - a rarely-met combination of requirements. We now report such a simple synthesis of over 10 g of an Fe-N-C catalyst with high activity towards oxygen reduction in acid. Atomically-dispersed Fe-N
4
active sites were designed orthogonally and simultaneously with hierarchical micro-, meso- and macroporosity, by exploiting a dual role of magnesium ions during pyrolysis. Combining the "active site imprinting" and "self-templating" strategies in a single novel magnesium iminodiacetate precursor yielded a catalyst with high specific surface area (SSA > 1600 m
2
g
−1
), a flow-enhancing hierarchical porosity, and high relative abundance of the most desirable D1-type Fe-N
4
sites (43%, by Mössbauer spectroscopy at 4.2 K). Despite the relatively low iron contents, the catalysts feature halfwave potentials up to 0.70 V
vs.
RHE at pH 1 and a mass activity of 1.22 A g
−1
at 0.8 V
vs.
RHE in RDE experiments. Thanks to the simple and scalable synthesis, this active and stable catalyst may serve as a workhorse in academic and industrial research into atomically-dispersed ORR electrocatalysis.
A scalable synthesis of magnesium ion imprinted nitrogen-doped carbon allows for facile preparation of large quantities of Fe-N-C, for large-scale fuel cell research.</description><subject>Carbon cycle</subject><subject>Catalysts</subject><subject>Chemical synthesis</subject><subject>Dispersion</subject><subject>Electrocatalysts</subject><subject>Energy conversion</subject><subject>Fuel cells</subject><subject>Fuel technology</subject><subject>Heavy metals</subject><subject>Industrial research</subject><subject>Iron</subject><subject>Macroporosity</subject><subject>Magnesium</subject><subject>Mossbauer spectroscopy</subject><subject>Nitrogen</subject><subject>Oxygen</subject><subject>Platinum</subject><subject>Platinum metals</subject><subject>Porosity</subject><subject>Pyrolysis</subject><subject>Relative abundance</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpFkE1LAzEQhoMoWLQX70LAm7iaTZpNcizVqlgslHpepknWpu42a7I97L832lLnMB-8z8zAi9BVTu5zwtSDoR0Qoij_OkEDSjjJxEgVp8deynM0jHFDUkhCCqUGKIxxdE1bW2yshs8ATRY1pDH2225to4vYVxi2GDrfuKTUPTYutjZEa-7w2tkAQa8PSuuD30U8tdl7NsEaOqj72OHKBwzaGafxfLG4RGcV1NEOD_UCfUyflpOXbDZ_fp2MZ5lmuegyAAnarNjIMg6C5iC1tCvKtOZSCzpiUknOqOSk0oZboySFlDkUqiq0IOwC3ezvtsF_72zsyo3fhW16WVKRp91CCpGo2z2lg48x2Kpsg2sg9GVOyl9by0e6HP_Z-pbg6z0coj5y_7azH37BdL8</recordid><startdate>20220927</startdate><enddate>20220927</enddate><creator>Koyuturk, Burak</creator><creator>Farber, Eliyahu M</creator><creator>Wagner, Friedrich E</creator><creator>Fellinger, Tim-Patrick</creator><creator>Eisenberg, David</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-5568-337X</orcidid><orcidid>https://orcid.org/0000-0001-6332-2347</orcidid><orcidid>https://orcid.org/0000-0001-5728-9448</orcidid></search><sort><creationdate>20220927</creationdate><title>A simple decagram-scale synthesis of an atomically dispersed, hierarchically porous Fe-N-C catalyst for acidic ORR</title><author>Koyuturk, Burak ; Farber, Eliyahu M ; Wagner, Friedrich E ; Fellinger, Tim-Patrick ; Eisenberg, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c317t-aa8acdb34e35a721a8c8eb23cc58c7243898532850fcd5ed982aed95a69f6c703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Carbon cycle</topic><topic>Catalysts</topic><topic>Chemical synthesis</topic><topic>Dispersion</topic><topic>Electrocatalysts</topic><topic>Energy conversion</topic><topic>Fuel cells</topic><topic>Fuel technology</topic><topic>Heavy metals</topic><topic>Industrial research</topic><topic>Iron</topic><topic>Macroporosity</topic><topic>Magnesium</topic><topic>Mossbauer spectroscopy</topic><topic>Nitrogen</topic><topic>Oxygen</topic><topic>Platinum</topic><topic>Platinum metals</topic><topic>Porosity</topic><topic>Pyrolysis</topic><topic>Relative abundance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koyuturk, Burak</creatorcontrib><creatorcontrib>Farber, Eliyahu M</creatorcontrib><creatorcontrib>Wagner, Friedrich E</creatorcontrib><creatorcontrib>Fellinger, Tim-Patrick</creatorcontrib><creatorcontrib>Eisenberg, David</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koyuturk, Burak</au><au>Farber, Eliyahu M</au><au>Wagner, Friedrich E</au><au>Fellinger, Tim-Patrick</au><au>Eisenberg, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A simple decagram-scale synthesis of an atomically dispersed, hierarchically porous Fe-N-C catalyst for acidic ORR</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2022-09-27</date><risdate>2022</risdate><volume>1</volume><issue>37</issue><spage>19859</spage><epage>19867</epage><pages>19859-19867</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Carbons doped with iron and nitrogen (Fe-N-Cs) are highly promising electrocatalysts for energy conversion reactions in the oxygen, nitrogen and carbon cycles. Containing no platinum group metals, they nevertheless compete with platinum-based catalysts in crucial fuel cell reactions, such as oxygen reduction in acid. Yet deployment of Fe-N-Cs in fuel cells requires also a flow-enhancing pore structure, and a scalable synthesis procedure - a rarely-met combination of requirements. We now report such a simple synthesis of over 10 g of an Fe-N-C catalyst with high activity towards oxygen reduction in acid. Atomically-dispersed Fe-N
4
active sites were designed orthogonally and simultaneously with hierarchical micro-, meso- and macroporosity, by exploiting a dual role of magnesium ions during pyrolysis. Combining the "active site imprinting" and "self-templating" strategies in a single novel magnesium iminodiacetate precursor yielded a catalyst with high specific surface area (SSA > 1600 m
2
g
−1
), a flow-enhancing hierarchical porosity, and high relative abundance of the most desirable D1-type Fe-N
4
sites (43%, by Mössbauer spectroscopy at 4.2 K). Despite the relatively low iron contents, the catalysts feature halfwave potentials up to 0.70 V
vs.
RHE at pH 1 and a mass activity of 1.22 A g
−1
at 0.8 V
vs.
RHE in RDE experiments. Thanks to the simple and scalable synthesis, this active and stable catalyst may serve as a workhorse in academic and industrial research into atomically-dispersed ORR electrocatalysis.
A scalable synthesis of magnesium ion imprinted nitrogen-doped carbon allows for facile preparation of large quantities of Fe-N-C, for large-scale fuel cell research.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d2ta00925k</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-5568-337X</orcidid><orcidid>https://orcid.org/0000-0001-6332-2347</orcidid><orcidid>https://orcid.org/0000-0001-5728-9448</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7488 |
ispartof | Journal of materials chemistry. A, Materials for energy and sustainability, 2022-09, Vol.1 (37), p.19859-19867 |
issn | 2050-7488 2050-7496 |
language | eng |
recordid | cdi_proquest_journals_2718536877 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Carbon cycle Catalysts Chemical synthesis Dispersion Electrocatalysts Energy conversion Fuel cells Fuel technology Heavy metals Industrial research Iron Macroporosity Magnesium Mossbauer spectroscopy Nitrogen Oxygen Platinum Platinum metals Porosity Pyrolysis Relative abundance |
title | A simple decagram-scale synthesis of an atomically dispersed, hierarchically porous Fe-N-C catalyst for acidic ORR |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T05%3A36%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20simple%20decagram-scale%20synthesis%20of%20an%20atomically%20dispersed,%20hierarchically%20porous%20Fe-N-C%20catalyst%20for%20acidic%20ORR&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Koyuturk,%20Burak&rft.date=2022-09-27&rft.volume=1&rft.issue=37&rft.spage=19859&rft.epage=19867&rft.pages=19859-19867&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d2ta00925k&rft_dat=%3Cproquest_cross%3E2718536877%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2718536877&rft_id=info:pmid/&rfr_iscdi=true |