EasyRec: An easy-to-use, extendable and efficient framework for building industrial recommendation systems

We present EasyRec, an easy-to-use, extendable and efficient recommendation framework for building industrial recommendation systems. Our EasyRec framework is superior in the following aspects: first, EasyRec adopts a modular and pluggable design pattern to reduce the efforts to build custom models;...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-09
Hauptverfasser: Cheng, Mengli, Gao, Yue, Liu, Guoqiang, Jin, HongSheng, Zhang, Xiaowen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Cheng, Mengli
Gao, Yue
Liu, Guoqiang
Jin, HongSheng
Zhang, Xiaowen
description We present EasyRec, an easy-to-use, extendable and efficient recommendation framework for building industrial recommendation systems. Our EasyRec framework is superior in the following aspects: first, EasyRec adopts a modular and pluggable design pattern to reduce the efforts to build custom models; second, EasyRec implements hyper-parameter optimization and feature selection algorithms to improve model performance automatically; third, EasyRec applies online learning to fast adapt to the ever-changing data distribution. The code is released: https://github.com/alibaba/EasyRec.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2718477848</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2718477848</sourcerecordid><originalsourceid>FETCH-proquest_journals_27184778483</originalsourceid><addsrcrecordid>eNqNi8EKgkAURYcgSMp_eNA2QUdNaRdhtI72MeqbGNOZmjdD-fcZ9AGt7oFz7owFPE2TqMw4X7CQqIvjmG8LnudpwLpK0HjGZgd7DThx5EzkCTeAb4e6FXWPIHQLKKVqFGoH0ooBX8beQRoLtVd9q_QNlG49OatEDxYbMwzft1NGA43kcKAVm0vRE4a_XbL1sbocTtHDmqdHctfOeKsndeVFUmZFUWZl-l_1AQXISUc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2718477848</pqid></control><display><type>article</type><title>EasyRec: An easy-to-use, extendable and efficient framework for building industrial recommendation systems</title><source>Free E- Journals</source><creator>Cheng, Mengli ; Gao, Yue ; Liu, Guoqiang ; Jin, HongSheng ; Zhang, Xiaowen</creator><creatorcontrib>Cheng, Mengli ; Gao, Yue ; Liu, Guoqiang ; Jin, HongSheng ; Zhang, Xiaowen</creatorcontrib><description>We present EasyRec, an easy-to-use, extendable and efficient recommendation framework for building industrial recommendation systems. Our EasyRec framework is superior in the following aspects: first, EasyRec adopts a modular and pluggable design pattern to reduce the efforts to build custom models; second, EasyRec implements hyper-parameter optimization and feature selection algorithms to improve model performance automatically; third, EasyRec applies online learning to fast adapt to the ever-changing data distribution. The code is released: https://github.com/alibaba/EasyRec.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Machine learning ; Modular design ; Optimization ; Recommender systems</subject><ispartof>arXiv.org, 2022-09</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Cheng, Mengli</creatorcontrib><creatorcontrib>Gao, Yue</creatorcontrib><creatorcontrib>Liu, Guoqiang</creatorcontrib><creatorcontrib>Jin, HongSheng</creatorcontrib><creatorcontrib>Zhang, Xiaowen</creatorcontrib><title>EasyRec: An easy-to-use, extendable and efficient framework for building industrial recommendation systems</title><title>arXiv.org</title><description>We present EasyRec, an easy-to-use, extendable and efficient recommendation framework for building industrial recommendation systems. Our EasyRec framework is superior in the following aspects: first, EasyRec adopts a modular and pluggable design pattern to reduce the efforts to build custom models; second, EasyRec implements hyper-parameter optimization and feature selection algorithms to improve model performance automatically; third, EasyRec applies online learning to fast adapt to the ever-changing data distribution. The code is released: https://github.com/alibaba/EasyRec.</description><subject>Algorithms</subject><subject>Machine learning</subject><subject>Modular design</subject><subject>Optimization</subject><subject>Recommender systems</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNi8EKgkAURYcgSMp_eNA2QUdNaRdhtI72MeqbGNOZmjdD-fcZ9AGt7oFz7owFPE2TqMw4X7CQqIvjmG8LnudpwLpK0HjGZgd7DThx5EzkCTeAb4e6FXWPIHQLKKVqFGoH0ooBX8beQRoLtVd9q_QNlG49OatEDxYbMwzft1NGA43kcKAVm0vRE4a_XbL1sbocTtHDmqdHctfOeKsndeVFUmZFUWZl-l_1AQXISUc</recordid><startdate>20220926</startdate><enddate>20220926</enddate><creator>Cheng, Mengli</creator><creator>Gao, Yue</creator><creator>Liu, Guoqiang</creator><creator>Jin, HongSheng</creator><creator>Zhang, Xiaowen</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220926</creationdate><title>EasyRec: An easy-to-use, extendable and efficient framework for building industrial recommendation systems</title><author>Cheng, Mengli ; Gao, Yue ; Liu, Guoqiang ; Jin, HongSheng ; Zhang, Xiaowen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27184778483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Machine learning</topic><topic>Modular design</topic><topic>Optimization</topic><topic>Recommender systems</topic><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Mengli</creatorcontrib><creatorcontrib>Gao, Yue</creatorcontrib><creatorcontrib>Liu, Guoqiang</creatorcontrib><creatorcontrib>Jin, HongSheng</creatorcontrib><creatorcontrib>Zhang, Xiaowen</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Mengli</au><au>Gao, Yue</au><au>Liu, Guoqiang</au><au>Jin, HongSheng</au><au>Zhang, Xiaowen</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>EasyRec: An easy-to-use, extendable and efficient framework for building industrial recommendation systems</atitle><jtitle>arXiv.org</jtitle><date>2022-09-26</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>We present EasyRec, an easy-to-use, extendable and efficient recommendation framework for building industrial recommendation systems. Our EasyRec framework is superior in the following aspects: first, EasyRec adopts a modular and pluggable design pattern to reduce the efforts to build custom models; second, EasyRec implements hyper-parameter optimization and feature selection algorithms to improve model performance automatically; third, EasyRec applies online learning to fast adapt to the ever-changing data distribution. The code is released: https://github.com/alibaba/EasyRec.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-09
issn 2331-8422
language eng
recordid cdi_proquest_journals_2718477848
source Free E- Journals
subjects Algorithms
Machine learning
Modular design
Optimization
Recommender systems
title EasyRec: An easy-to-use, extendable and efficient framework for building industrial recommendation systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T13%3A33%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=EasyRec:%20An%20easy-to-use,%20extendable%20and%20efficient%20framework%20for%20building%20industrial%20recommendation%20systems&rft.jtitle=arXiv.org&rft.au=Cheng,%20Mengli&rft.date=2022-09-26&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2718477848%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2718477848&rft_id=info:pmid/&rfr_iscdi=true