Mobile Edge Server Deployment towards Task Offloading in Mobile Edge Computing: A Clustering Approach

Recent years have witnessed the effect of Mobile Edge Computing (MEC) during resource-intensive and time-critical applications toward various mobile devices. Therefore, Mobile Edge Severs (MES) are widely deployed adjacent to the 5G Base Station (BS) to upgrade the performance of the specific applic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mobile networks and applications 2022-08, Vol.27 (4), p.1476-1489
Hauptverfasser: Li, Wenzao, Chen, Jiali, Li, Yiquan, Wen, Zhan, Peng, Jing, Wu, Xi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1489
container_issue 4
container_start_page 1476
container_title Mobile networks and applications
container_volume 27
creator Li, Wenzao
Chen, Jiali
Li, Yiquan
Wen, Zhan
Peng, Jing
Wu, Xi
description Recent years have witnessed the effect of Mobile Edge Computing (MEC) during resource-intensive and time-critical applications toward various mobile devices. Therefore, Mobile Edge Severs (MES) are widely deployed adjacent to the 5G Base Station (BS) to upgrade the performance of the specific application system. Unfortunately, there have rare researches for the location planning of edge servers in the MEC scenario. The deployment of MES may cover a wide range of theoretical concerns, such as computation offloading cost, system performance. In this paper, we consider the problem of optimization of MES deployment in multiple BSs scenarios. To achieve this, we proposed an approach based on the improved K-Means clustering to determine the theoretical location and amount of edge servers. Besides, mobile computation tasks are strategically assigned to the distance-first edge server. To this end, we then develop a reasonable deployment scheme based on K-means for edge servers, which can effectively reduce the network delay, energy consumption, and cost of edge servers. We have compared the density-based clustering algorithm proposed in the recent research. Extensive simulation results indicate that our strategy reduces average completion time by 15.7 % , power consumption by 22 % , and overhead by 19 % in edge server deployment issues.
doi_str_mv 10.1007/s11036-022-01975-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2718471581</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2718471581</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-7700c37c4193d441eb5ecb1bdc0e25320ab2eda3c52734853ffde79cc7857e1b3</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhC0EEqXwBzhZ4mzwI64TblUoD6moB4rEzXKcTUlJ42An0P57UoIEJ0670s43ox2Ezhm9ZJSqq8AYFRNCOSeUJUqS7QEaMak4iZkUh_0uYkGiSfJyjE5CWFNKpYyjEYJHl5UV4Fm-AvwE_gM8voGmcrsN1C1u3afxecBLE97woigqZ_KyXuGyxn_B1G2aru0P13iK06oLLfi9bNo03hn7eoqOClMFOPuZY_R8O1um92S-uHtIp3NiuaItUYpSK5SNWCLyKGKQSbAZy3JLgUvBqck45EZYyZWIYimKIgeVWKtiqYBlYowuBt8-9r2D0Oq163zdR2quWBwpJmPWq_igst6F4KHQjS83xu80o3pfpx7q1H2d-rtOve0hMUCh2b8G_tf6H-oLJod4-A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2718471581</pqid></control><display><type>article</type><title>Mobile Edge Server Deployment towards Task Offloading in Mobile Edge Computing: A Clustering Approach</title><source>SpringerLink Journals - AutoHoldings</source><creator>Li, Wenzao ; Chen, Jiali ; Li, Yiquan ; Wen, Zhan ; Peng, Jing ; Wu, Xi</creator><creatorcontrib>Li, Wenzao ; Chen, Jiali ; Li, Yiquan ; Wen, Zhan ; Peng, Jing ; Wu, Xi</creatorcontrib><description>Recent years have witnessed the effect of Mobile Edge Computing (MEC) during resource-intensive and time-critical applications toward various mobile devices. Therefore, Mobile Edge Severs (MES) are widely deployed adjacent to the 5G Base Station (BS) to upgrade the performance of the specific application system. Unfortunately, there have rare researches for the location planning of edge servers in the MEC scenario. The deployment of MES may cover a wide range of theoretical concerns, such as computation offloading cost, system performance. In this paper, we consider the problem of optimization of MES deployment in multiple BSs scenarios. To achieve this, we proposed an approach based on the improved K-Means clustering to determine the theoretical location and amount of edge servers. Besides, mobile computation tasks are strategically assigned to the distance-first edge server. To this end, we then develop a reasonable deployment scheme based on K-means for edge servers, which can effectively reduce the network delay, energy consumption, and cost of edge servers. We have compared the density-based clustering algorithm proposed in the recent research. Extensive simulation results indicate that our strategy reduces average completion time by 15.7 % , power consumption by 22 % , and overhead by 19 % in edge server deployment issues.</description><identifier>ISSN: 1383-469X</identifier><identifier>EISSN: 1572-8153</identifier><identifier>DOI: 10.1007/s11036-022-01975-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Cluster analysis ; Clustering ; Communications Engineering ; Completion time ; Computation offloading ; Computer Communication Networks ; Edge computing ; Electrical Engineering ; Electronic devices ; Energy consumption ; Engineering ; IT in Business ; Mobile computing ; Networks ; Optimization ; Power consumption ; Radio equipment ; Servers ; Vector quantization</subject><ispartof>Mobile networks and applications, 2022-08, Vol.27 (4), p.1476-1489</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-7700c37c4193d441eb5ecb1bdc0e25320ab2eda3c52734853ffde79cc7857e1b3</cites><orcidid>0000-0002-8912-3327</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11036-022-01975-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11036-022-01975-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Li, Wenzao</creatorcontrib><creatorcontrib>Chen, Jiali</creatorcontrib><creatorcontrib>Li, Yiquan</creatorcontrib><creatorcontrib>Wen, Zhan</creatorcontrib><creatorcontrib>Peng, Jing</creatorcontrib><creatorcontrib>Wu, Xi</creatorcontrib><title>Mobile Edge Server Deployment towards Task Offloading in Mobile Edge Computing: A Clustering Approach</title><title>Mobile networks and applications</title><addtitle>Mobile Netw Appl</addtitle><description>Recent years have witnessed the effect of Mobile Edge Computing (MEC) during resource-intensive and time-critical applications toward various mobile devices. Therefore, Mobile Edge Severs (MES) are widely deployed adjacent to the 5G Base Station (BS) to upgrade the performance of the specific application system. Unfortunately, there have rare researches for the location planning of edge servers in the MEC scenario. The deployment of MES may cover a wide range of theoretical concerns, such as computation offloading cost, system performance. In this paper, we consider the problem of optimization of MES deployment in multiple BSs scenarios. To achieve this, we proposed an approach based on the improved K-Means clustering to determine the theoretical location and amount of edge servers. Besides, mobile computation tasks are strategically assigned to the distance-first edge server. To this end, we then develop a reasonable deployment scheme based on K-means for edge servers, which can effectively reduce the network delay, energy consumption, and cost of edge servers. We have compared the density-based clustering algorithm proposed in the recent research. Extensive simulation results indicate that our strategy reduces average completion time by 15.7 % , power consumption by 22 % , and overhead by 19 % in edge server deployment issues.</description><subject>Algorithms</subject><subject>Cluster analysis</subject><subject>Clustering</subject><subject>Communications Engineering</subject><subject>Completion time</subject><subject>Computation offloading</subject><subject>Computer Communication Networks</subject><subject>Edge computing</subject><subject>Electrical Engineering</subject><subject>Electronic devices</subject><subject>Energy consumption</subject><subject>Engineering</subject><subject>IT in Business</subject><subject>Mobile computing</subject><subject>Networks</subject><subject>Optimization</subject><subject>Power consumption</subject><subject>Radio equipment</subject><subject>Servers</subject><subject>Vector quantization</subject><issn>1383-469X</issn><issn>1572-8153</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kEtPwzAQhC0EEqXwBzhZ4mzwI64TblUoD6moB4rEzXKcTUlJ42An0P57UoIEJ0670s43ox2Ezhm9ZJSqq8AYFRNCOSeUJUqS7QEaMak4iZkUh_0uYkGiSfJyjE5CWFNKpYyjEYJHl5UV4Fm-AvwE_gM8voGmcrsN1C1u3afxecBLE97woigqZ_KyXuGyxn_B1G2aru0P13iK06oLLfi9bNo03hn7eoqOClMFOPuZY_R8O1um92S-uHtIp3NiuaItUYpSK5SNWCLyKGKQSbAZy3JLgUvBqck45EZYyZWIYimKIgeVWKtiqYBlYowuBt8-9r2D0Oq163zdR2quWBwpJmPWq_igst6F4KHQjS83xu80o3pfpx7q1H2d-rtOve0hMUCh2b8G_tf6H-oLJod4-A</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Li, Wenzao</creator><creator>Chen, Jiali</creator><creator>Li, Yiquan</creator><creator>Wen, Zhan</creator><creator>Peng, Jing</creator><creator>Wu, Xi</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-8912-3327</orcidid></search><sort><creationdate>20220801</creationdate><title>Mobile Edge Server Deployment towards Task Offloading in Mobile Edge Computing: A Clustering Approach</title><author>Li, Wenzao ; Chen, Jiali ; Li, Yiquan ; Wen, Zhan ; Peng, Jing ; Wu, Xi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-7700c37c4193d441eb5ecb1bdc0e25320ab2eda3c52734853ffde79cc7857e1b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Cluster analysis</topic><topic>Clustering</topic><topic>Communications Engineering</topic><topic>Completion time</topic><topic>Computation offloading</topic><topic>Computer Communication Networks</topic><topic>Edge computing</topic><topic>Electrical Engineering</topic><topic>Electronic devices</topic><topic>Energy consumption</topic><topic>Engineering</topic><topic>IT in Business</topic><topic>Mobile computing</topic><topic>Networks</topic><topic>Optimization</topic><topic>Power consumption</topic><topic>Radio equipment</topic><topic>Servers</topic><topic>Vector quantization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Wenzao</creatorcontrib><creatorcontrib>Chen, Jiali</creatorcontrib><creatorcontrib>Li, Yiquan</creatorcontrib><creatorcontrib>Wen, Zhan</creatorcontrib><creatorcontrib>Peng, Jing</creatorcontrib><creatorcontrib>Wu, Xi</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Mobile networks and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Wenzao</au><au>Chen, Jiali</au><au>Li, Yiquan</au><au>Wen, Zhan</au><au>Peng, Jing</au><au>Wu, Xi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mobile Edge Server Deployment towards Task Offloading in Mobile Edge Computing: A Clustering Approach</atitle><jtitle>Mobile networks and applications</jtitle><stitle>Mobile Netw Appl</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>27</volume><issue>4</issue><spage>1476</spage><epage>1489</epage><pages>1476-1489</pages><issn>1383-469X</issn><eissn>1572-8153</eissn><abstract>Recent years have witnessed the effect of Mobile Edge Computing (MEC) during resource-intensive and time-critical applications toward various mobile devices. Therefore, Mobile Edge Severs (MES) are widely deployed adjacent to the 5G Base Station (BS) to upgrade the performance of the specific application system. Unfortunately, there have rare researches for the location planning of edge servers in the MEC scenario. The deployment of MES may cover a wide range of theoretical concerns, such as computation offloading cost, system performance. In this paper, we consider the problem of optimization of MES deployment in multiple BSs scenarios. To achieve this, we proposed an approach based on the improved K-Means clustering to determine the theoretical location and amount of edge servers. Besides, mobile computation tasks are strategically assigned to the distance-first edge server. To this end, we then develop a reasonable deployment scheme based on K-means for edge servers, which can effectively reduce the network delay, energy consumption, and cost of edge servers. We have compared the density-based clustering algorithm proposed in the recent research. Extensive simulation results indicate that our strategy reduces average completion time by 15.7 % , power consumption by 22 % , and overhead by 19 % in edge server deployment issues.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11036-022-01975-x</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-8912-3327</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1383-469X
ispartof Mobile networks and applications, 2022-08, Vol.27 (4), p.1476-1489
issn 1383-469X
1572-8153
language eng
recordid cdi_proquest_journals_2718471581
source SpringerLink Journals - AutoHoldings
subjects Algorithms
Cluster analysis
Clustering
Communications Engineering
Completion time
Computation offloading
Computer Communication Networks
Edge computing
Electrical Engineering
Electronic devices
Energy consumption
Engineering
IT in Business
Mobile computing
Networks
Optimization
Power consumption
Radio equipment
Servers
Vector quantization
title Mobile Edge Server Deployment towards Task Offloading in Mobile Edge Computing: A Clustering Approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T23%3A07%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mobile%20Edge%20Server%20Deployment%20towards%20Task%20Offloading%20in%20Mobile%20Edge%20Computing:%20A%20Clustering%20Approach&rft.jtitle=Mobile%20networks%20and%20applications&rft.au=Li,%20Wenzao&rft.date=2022-08-01&rft.volume=27&rft.issue=4&rft.spage=1476&rft.epage=1489&rft.pages=1476-1489&rft.issn=1383-469X&rft.eissn=1572-8153&rft_id=info:doi/10.1007/s11036-022-01975-x&rft_dat=%3Cproquest_cross%3E2718471581%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2718471581&rft_id=info:pmid/&rfr_iscdi=true