Mobile Edge Server Deployment towards Task Offloading in Mobile Edge Computing: A Clustering Approach
Recent years have witnessed the effect of Mobile Edge Computing (MEC) during resource-intensive and time-critical applications toward various mobile devices. Therefore, Mobile Edge Severs (MES) are widely deployed adjacent to the 5G Base Station (BS) to upgrade the performance of the specific applic...
Gespeichert in:
Veröffentlicht in: | Mobile networks and applications 2022-08, Vol.27 (4), p.1476-1489 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1489 |
---|---|
container_issue | 4 |
container_start_page | 1476 |
container_title | Mobile networks and applications |
container_volume | 27 |
creator | Li, Wenzao Chen, Jiali Li, Yiquan Wen, Zhan Peng, Jing Wu, Xi |
description | Recent years have witnessed the effect of Mobile Edge Computing (MEC) during resource-intensive and time-critical applications toward various mobile devices. Therefore, Mobile Edge Severs (MES) are widely deployed adjacent to the 5G Base Station (BS) to upgrade the performance of the specific application system. Unfortunately, there have rare researches for the location planning of edge servers in the MEC scenario. The deployment of MES may cover a wide range of theoretical concerns, such as computation offloading cost, system performance. In this paper, we consider the problem of optimization of MES deployment in multiple BSs scenarios. To achieve this, we proposed an approach based on the improved K-Means clustering to determine the theoretical location and amount of edge servers. Besides, mobile computation tasks are strategically assigned to the distance-first edge server. To this end, we then develop a reasonable deployment scheme based on K-means for edge servers, which can effectively reduce the network delay, energy consumption, and cost of edge servers. We have compared the density-based clustering algorithm proposed in the recent research. Extensive simulation results indicate that our strategy reduces average completion time by 15.7
%
, power consumption by 22
%
, and overhead by 19
%
in edge server deployment issues. |
doi_str_mv | 10.1007/s11036-022-01975-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2718471581</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2718471581</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-7700c37c4193d441eb5ecb1bdc0e25320ab2eda3c52734853ffde79cc7857e1b3</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhC0EEqXwBzhZ4mzwI64TblUoD6moB4rEzXKcTUlJ42An0P57UoIEJ0670s43ox2Ezhm9ZJSqq8AYFRNCOSeUJUqS7QEaMak4iZkUh_0uYkGiSfJyjE5CWFNKpYyjEYJHl5UV4Fm-AvwE_gM8voGmcrsN1C1u3afxecBLE97woigqZ_KyXuGyxn_B1G2aru0P13iK06oLLfi9bNo03hn7eoqOClMFOPuZY_R8O1um92S-uHtIp3NiuaItUYpSK5SNWCLyKGKQSbAZy3JLgUvBqck45EZYyZWIYimKIgeVWKtiqYBlYowuBt8-9r2D0Oq163zdR2quWBwpJmPWq_igst6F4KHQjS83xu80o3pfpx7q1H2d-rtOve0hMUCh2b8G_tf6H-oLJod4-A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2718471581</pqid></control><display><type>article</type><title>Mobile Edge Server Deployment towards Task Offloading in Mobile Edge Computing: A Clustering Approach</title><source>SpringerLink Journals - AutoHoldings</source><creator>Li, Wenzao ; Chen, Jiali ; Li, Yiquan ; Wen, Zhan ; Peng, Jing ; Wu, Xi</creator><creatorcontrib>Li, Wenzao ; Chen, Jiali ; Li, Yiquan ; Wen, Zhan ; Peng, Jing ; Wu, Xi</creatorcontrib><description>Recent years have witnessed the effect of Mobile Edge Computing (MEC) during resource-intensive and time-critical applications toward various mobile devices. Therefore, Mobile Edge Severs (MES) are widely deployed adjacent to the 5G Base Station (BS) to upgrade the performance of the specific application system. Unfortunately, there have rare researches for the location planning of edge servers in the MEC scenario. The deployment of MES may cover a wide range of theoretical concerns, such as computation offloading cost, system performance. In this paper, we consider the problem of optimization of MES deployment in multiple BSs scenarios. To achieve this, we proposed an approach based on the improved K-Means clustering to determine the theoretical location and amount of edge servers. Besides, mobile computation tasks are strategically assigned to the distance-first edge server. To this end, we then develop a reasonable deployment scheme based on K-means for edge servers, which can effectively reduce the network delay, energy consumption, and cost of edge servers. We have compared the density-based clustering algorithm proposed in the recent research. Extensive simulation results indicate that our strategy reduces average completion time by 15.7
%
, power consumption by 22
%
, and overhead by 19
%
in edge server deployment issues.</description><identifier>ISSN: 1383-469X</identifier><identifier>EISSN: 1572-8153</identifier><identifier>DOI: 10.1007/s11036-022-01975-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Cluster analysis ; Clustering ; Communications Engineering ; Completion time ; Computation offloading ; Computer Communication Networks ; Edge computing ; Electrical Engineering ; Electronic devices ; Energy consumption ; Engineering ; IT in Business ; Mobile computing ; Networks ; Optimization ; Power consumption ; Radio equipment ; Servers ; Vector quantization</subject><ispartof>Mobile networks and applications, 2022-08, Vol.27 (4), p.1476-1489</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-7700c37c4193d441eb5ecb1bdc0e25320ab2eda3c52734853ffde79cc7857e1b3</cites><orcidid>0000-0002-8912-3327</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11036-022-01975-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11036-022-01975-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Li, Wenzao</creatorcontrib><creatorcontrib>Chen, Jiali</creatorcontrib><creatorcontrib>Li, Yiquan</creatorcontrib><creatorcontrib>Wen, Zhan</creatorcontrib><creatorcontrib>Peng, Jing</creatorcontrib><creatorcontrib>Wu, Xi</creatorcontrib><title>Mobile Edge Server Deployment towards Task Offloading in Mobile Edge Computing: A Clustering Approach</title><title>Mobile networks and applications</title><addtitle>Mobile Netw Appl</addtitle><description>Recent years have witnessed the effect of Mobile Edge Computing (MEC) during resource-intensive and time-critical applications toward various mobile devices. Therefore, Mobile Edge Severs (MES) are widely deployed adjacent to the 5G Base Station (BS) to upgrade the performance of the specific application system. Unfortunately, there have rare researches for the location planning of edge servers in the MEC scenario. The deployment of MES may cover a wide range of theoretical concerns, such as computation offloading cost, system performance. In this paper, we consider the problem of optimization of MES deployment in multiple BSs scenarios. To achieve this, we proposed an approach based on the improved K-Means clustering to determine the theoretical location and amount of edge servers. Besides, mobile computation tasks are strategically assigned to the distance-first edge server. To this end, we then develop a reasonable deployment scheme based on K-means for edge servers, which can effectively reduce the network delay, energy consumption, and cost of edge servers. We have compared the density-based clustering algorithm proposed in the recent research. Extensive simulation results indicate that our strategy reduces average completion time by 15.7
%
, power consumption by 22
%
, and overhead by 19
%
in edge server deployment issues.</description><subject>Algorithms</subject><subject>Cluster analysis</subject><subject>Clustering</subject><subject>Communications Engineering</subject><subject>Completion time</subject><subject>Computation offloading</subject><subject>Computer Communication Networks</subject><subject>Edge computing</subject><subject>Electrical Engineering</subject><subject>Electronic devices</subject><subject>Energy consumption</subject><subject>Engineering</subject><subject>IT in Business</subject><subject>Mobile computing</subject><subject>Networks</subject><subject>Optimization</subject><subject>Power consumption</subject><subject>Radio equipment</subject><subject>Servers</subject><subject>Vector quantization</subject><issn>1383-469X</issn><issn>1572-8153</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kEtPwzAQhC0EEqXwBzhZ4mzwI64TblUoD6moB4rEzXKcTUlJ42An0P57UoIEJ0670s43ox2Ezhm9ZJSqq8AYFRNCOSeUJUqS7QEaMak4iZkUh_0uYkGiSfJyjE5CWFNKpYyjEYJHl5UV4Fm-AvwE_gM8voGmcrsN1C1u3afxecBLE97woigqZ_KyXuGyxn_B1G2aru0P13iK06oLLfi9bNo03hn7eoqOClMFOPuZY_R8O1um92S-uHtIp3NiuaItUYpSK5SNWCLyKGKQSbAZy3JLgUvBqck45EZYyZWIYimKIgeVWKtiqYBlYowuBt8-9r2D0Oq163zdR2quWBwpJmPWq_igst6F4KHQjS83xu80o3pfpx7q1H2d-rtOve0hMUCh2b8G_tf6H-oLJod4-A</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Li, Wenzao</creator><creator>Chen, Jiali</creator><creator>Li, Yiquan</creator><creator>Wen, Zhan</creator><creator>Peng, Jing</creator><creator>Wu, Xi</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-8912-3327</orcidid></search><sort><creationdate>20220801</creationdate><title>Mobile Edge Server Deployment towards Task Offloading in Mobile Edge Computing: A Clustering Approach</title><author>Li, Wenzao ; Chen, Jiali ; Li, Yiquan ; Wen, Zhan ; Peng, Jing ; Wu, Xi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-7700c37c4193d441eb5ecb1bdc0e25320ab2eda3c52734853ffde79cc7857e1b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Cluster analysis</topic><topic>Clustering</topic><topic>Communications Engineering</topic><topic>Completion time</topic><topic>Computation offloading</topic><topic>Computer Communication Networks</topic><topic>Edge computing</topic><topic>Electrical Engineering</topic><topic>Electronic devices</topic><topic>Energy consumption</topic><topic>Engineering</topic><topic>IT in Business</topic><topic>Mobile computing</topic><topic>Networks</topic><topic>Optimization</topic><topic>Power consumption</topic><topic>Radio equipment</topic><topic>Servers</topic><topic>Vector quantization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Wenzao</creatorcontrib><creatorcontrib>Chen, Jiali</creatorcontrib><creatorcontrib>Li, Yiquan</creatorcontrib><creatorcontrib>Wen, Zhan</creatorcontrib><creatorcontrib>Peng, Jing</creatorcontrib><creatorcontrib>Wu, Xi</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Mobile networks and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Wenzao</au><au>Chen, Jiali</au><au>Li, Yiquan</au><au>Wen, Zhan</au><au>Peng, Jing</au><au>Wu, Xi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mobile Edge Server Deployment towards Task Offloading in Mobile Edge Computing: A Clustering Approach</atitle><jtitle>Mobile networks and applications</jtitle><stitle>Mobile Netw Appl</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>27</volume><issue>4</issue><spage>1476</spage><epage>1489</epage><pages>1476-1489</pages><issn>1383-469X</issn><eissn>1572-8153</eissn><abstract>Recent years have witnessed the effect of Mobile Edge Computing (MEC) during resource-intensive and time-critical applications toward various mobile devices. Therefore, Mobile Edge Severs (MES) are widely deployed adjacent to the 5G Base Station (BS) to upgrade the performance of the specific application system. Unfortunately, there have rare researches for the location planning of edge servers in the MEC scenario. The deployment of MES may cover a wide range of theoretical concerns, such as computation offloading cost, system performance. In this paper, we consider the problem of optimization of MES deployment in multiple BSs scenarios. To achieve this, we proposed an approach based on the improved K-Means clustering to determine the theoretical location and amount of edge servers. Besides, mobile computation tasks are strategically assigned to the distance-first edge server. To this end, we then develop a reasonable deployment scheme based on K-means for edge servers, which can effectively reduce the network delay, energy consumption, and cost of edge servers. We have compared the density-based clustering algorithm proposed in the recent research. Extensive simulation results indicate that our strategy reduces average completion time by 15.7
%
, power consumption by 22
%
, and overhead by 19
%
in edge server deployment issues.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11036-022-01975-x</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-8912-3327</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1383-469X |
ispartof | Mobile networks and applications, 2022-08, Vol.27 (4), p.1476-1489 |
issn | 1383-469X 1572-8153 |
language | eng |
recordid | cdi_proquest_journals_2718471581 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algorithms Cluster analysis Clustering Communications Engineering Completion time Computation offloading Computer Communication Networks Edge computing Electrical Engineering Electronic devices Energy consumption Engineering IT in Business Mobile computing Networks Optimization Power consumption Radio equipment Servers Vector quantization |
title | Mobile Edge Server Deployment towards Task Offloading in Mobile Edge Computing: A Clustering Approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T23%3A07%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mobile%20Edge%20Server%20Deployment%20towards%20Task%20Offloading%20in%20Mobile%20Edge%20Computing:%20A%20Clustering%20Approach&rft.jtitle=Mobile%20networks%20and%20applications&rft.au=Li,%20Wenzao&rft.date=2022-08-01&rft.volume=27&rft.issue=4&rft.spage=1476&rft.epage=1489&rft.pages=1476-1489&rft.issn=1383-469X&rft.eissn=1572-8153&rft_id=info:doi/10.1007/s11036-022-01975-x&rft_dat=%3Cproquest_cross%3E2718471581%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2718471581&rft_id=info:pmid/&rfr_iscdi=true |