A Multi-Trajectory Monte Carlo Sampler

Markov Chain Monte Carlo techniques based on Hamiltonian dynamics can sample the first or last principal components of multivariate probability models using simulated trajectories. However, when components' scales span orders of magnitude, these approaches may be unable of accessing all compone...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Wangji Wanglu Jishu Xuekan = Journal of Internet Technology 2022-01, Vol.23 (5), p.1117-1128
Hauptverfasser: Xiaopeng Xu, Xiaopeng Xu, Xiaopeng Xu, Chuancai Liu, Chuancai Liu, Hongji Yang, Hongji Yang, Xiaochun Zhang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1128
container_issue 5
container_start_page 1117
container_title Wangji Wanglu Jishu Xuekan = Journal of Internet Technology
container_volume 23
creator Xiaopeng Xu, Xiaopeng Xu
Xiaopeng Xu, Chuancai Liu
Chuancai Liu, Hongji Yang
Hongji Yang, Xiaochun Zhang
description Markov Chain Monte Carlo techniques based on Hamiltonian dynamics can sample the first or last principal components of multivariate probability models using simulated trajectories. However, when components' scales span orders of magnitude, these approaches may be unable of accessing all components adequately. While it is possible to reconcile the first and last components by alternating between two different types of trajectories, the sampling of intermediate components may be imprecise. In this paper, a function generalizing the kinetic energies of Hamiltonian Monte Carlo and Riemannian Manifold Hamiltonian Monte Carlo is proposed, and it is found that the methods based on a specific form of the function can more accurately sample normal distributions. Additionally, the multi-particle algorithm's reasoning is given after a review of some statistical ideas.
doi_str_mv 10.53106/160792642022092305020
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2718383840</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2718383840</sourcerecordid><originalsourceid>FETCH-LOGICAL-c230t-6597b278917fe3469651011880ba8c3709e791f091bc8b8959e7ce594cb339f03</originalsourceid><addsrcrecordid>eNptUMtqwzAQFKWFhjS_UAyF3tzuStbrGExfkNBD07OQhAwOTuRK9iF_X7vpoYeyh9ndGWZgCLlFeOAMQTyiAKmpqChQCpoy4EDhgizmfzkTl3_2a7LKuXUAFDllFBfkfl1sx25oy12y--CHmE7FNh6HUNQ2dbH4sIe-C-mGXDW2y2H1i0vy-fy0q1_LzfvLW73elH5KHkrBtXRUKo2yCawSWnAERKXAWeWZBB2kxgY0Oq-c0ny6feC68o4x3QBbkruzb5_i1xjyYPZxTMcp0lCJik1TzSpxVvkUc06hMX1qDzadDIL5qcX8Wwv7BulBURk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2718383840</pqid></control><display><type>article</type><title>A Multi-Trajectory Monte Carlo Sampler</title><source>Alma/SFX Local Collection</source><creator>Xiaopeng Xu, Xiaopeng Xu ; Xiaopeng Xu, Chuancai Liu ; Chuancai Liu, Hongji Yang ; Hongji Yang, Xiaochun Zhang</creator><creatorcontrib>Xiaopeng Xu, Xiaopeng Xu ; Xiaopeng Xu, Chuancai Liu ; Chuancai Liu, Hongji Yang ; Hongji Yang, Xiaochun Zhang</creatorcontrib><description>Markov Chain Monte Carlo techniques based on Hamiltonian dynamics can sample the first or last principal components of multivariate probability models using simulated trajectories. However, when components' scales span orders of magnitude, these approaches may be unable of accessing all components adequately. While it is possible to reconcile the first and last components by alternating between two different types of trajectories, the sampling of intermediate components may be imprecise. In this paper, a function generalizing the kinetic energies of Hamiltonian Monte Carlo and Riemannian Manifold Hamiltonian Monte Carlo is proposed, and it is found that the methods based on a specific form of the function can more accurately sample normal distributions. Additionally, the multi-particle algorithm's reasoning is given after a review of some statistical ideas.</description><identifier>ISSN: 1607-9264</identifier><identifier>EISSN: 1607-9264</identifier><identifier>EISSN: 2079-4029</identifier><identifier>DOI: 10.53106/160792642022092305020</identifier><language>eng</language><publisher>Hualien: National Dong Hwa University, Computer Center</publisher><subject>Algorithms ; Markov chains ; Riemann manifold ; Statistical analysis</subject><ispartof>Wangji Wanglu Jishu Xuekan = Journal of Internet Technology, 2022-01, Vol.23 (5), p.1117-1128</ispartof><rights>Copyright National Dong Hwa University, Computer Center 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Xiaopeng Xu, Xiaopeng Xu</creatorcontrib><creatorcontrib>Xiaopeng Xu, Chuancai Liu</creatorcontrib><creatorcontrib>Chuancai Liu, Hongji Yang</creatorcontrib><creatorcontrib>Hongji Yang, Xiaochun Zhang</creatorcontrib><title>A Multi-Trajectory Monte Carlo Sampler</title><title>Wangji Wanglu Jishu Xuekan = Journal of Internet Technology</title><description>Markov Chain Monte Carlo techniques based on Hamiltonian dynamics can sample the first or last principal components of multivariate probability models using simulated trajectories. However, when components' scales span orders of magnitude, these approaches may be unable of accessing all components adequately. While it is possible to reconcile the first and last components by alternating between two different types of trajectories, the sampling of intermediate components may be imprecise. In this paper, a function generalizing the kinetic energies of Hamiltonian Monte Carlo and Riemannian Manifold Hamiltonian Monte Carlo is proposed, and it is found that the methods based on a specific form of the function can more accurately sample normal distributions. Additionally, the multi-particle algorithm's reasoning is given after a review of some statistical ideas.</description><subject>Algorithms</subject><subject>Markov chains</subject><subject>Riemann manifold</subject><subject>Statistical analysis</subject><issn>1607-9264</issn><issn>1607-9264</issn><issn>2079-4029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNptUMtqwzAQFKWFhjS_UAyF3tzuStbrGExfkNBD07OQhAwOTuRK9iF_X7vpoYeyh9ndGWZgCLlFeOAMQTyiAKmpqChQCpoy4EDhgizmfzkTl3_2a7LKuXUAFDllFBfkfl1sx25oy12y--CHmE7FNh6HUNQ2dbH4sIe-C-mGXDW2y2H1i0vy-fy0q1_LzfvLW73elH5KHkrBtXRUKo2yCawSWnAERKXAWeWZBB2kxgY0Oq-c0ny6feC68o4x3QBbkruzb5_i1xjyYPZxTMcp0lCJik1TzSpxVvkUc06hMX1qDzadDIL5qcX8Wwv7BulBURk</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Xiaopeng Xu, Xiaopeng Xu</creator><creator>Xiaopeng Xu, Chuancai Liu</creator><creator>Chuancai Liu, Hongji Yang</creator><creator>Hongji Yang, Xiaochun Zhang</creator><general>National Dong Hwa University, Computer Center</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20220101</creationdate><title>A Multi-Trajectory Monte Carlo Sampler</title><author>Xiaopeng Xu, Xiaopeng Xu ; Xiaopeng Xu, Chuancai Liu ; Chuancai Liu, Hongji Yang ; Hongji Yang, Xiaochun Zhang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c230t-6597b278917fe3469651011880ba8c3709e791f091bc8b8959e7ce594cb339f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Markov chains</topic><topic>Riemann manifold</topic><topic>Statistical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiaopeng Xu, Xiaopeng Xu</creatorcontrib><creatorcontrib>Xiaopeng Xu, Chuancai Liu</creatorcontrib><creatorcontrib>Chuancai Liu, Hongji Yang</creatorcontrib><creatorcontrib>Hongji Yang, Xiaochun Zhang</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Wangji Wanglu Jishu Xuekan = Journal of Internet Technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiaopeng Xu, Xiaopeng Xu</au><au>Xiaopeng Xu, Chuancai Liu</au><au>Chuancai Liu, Hongji Yang</au><au>Hongji Yang, Xiaochun Zhang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Multi-Trajectory Monte Carlo Sampler</atitle><jtitle>Wangji Wanglu Jishu Xuekan = Journal of Internet Technology</jtitle><date>2022-01-01</date><risdate>2022</risdate><volume>23</volume><issue>5</issue><spage>1117</spage><epage>1128</epage><pages>1117-1128</pages><issn>1607-9264</issn><eissn>1607-9264</eissn><eissn>2079-4029</eissn><abstract>Markov Chain Monte Carlo techniques based on Hamiltonian dynamics can sample the first or last principal components of multivariate probability models using simulated trajectories. However, when components' scales span orders of magnitude, these approaches may be unable of accessing all components adequately. While it is possible to reconcile the first and last components by alternating between two different types of trajectories, the sampling of intermediate components may be imprecise. In this paper, a function generalizing the kinetic energies of Hamiltonian Monte Carlo and Riemannian Manifold Hamiltonian Monte Carlo is proposed, and it is found that the methods based on a specific form of the function can more accurately sample normal distributions. Additionally, the multi-particle algorithm's reasoning is given after a review of some statistical ideas.</abstract><cop>Hualien</cop><pub>National Dong Hwa University, Computer Center</pub><doi>10.53106/160792642022092305020</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1607-9264
ispartof Wangji Wanglu Jishu Xuekan = Journal of Internet Technology, 2022-01, Vol.23 (5), p.1117-1128
issn 1607-9264
1607-9264
2079-4029
language eng
recordid cdi_proquest_journals_2718383840
source Alma/SFX Local Collection
subjects Algorithms
Markov chains
Riemann manifold
Statistical analysis
title A Multi-Trajectory Monte Carlo Sampler
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T10%3A07%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Multi-Trajectory%20Monte%20Carlo%20Sampler&rft.jtitle=Wangji%20Wanglu%20Jishu%20Xuekan%20=%20Journal%20of%20Internet%20Technology&rft.au=Xiaopeng%20Xu,%20Xiaopeng%20Xu&rft.date=2022-01-01&rft.volume=23&rft.issue=5&rft.spage=1117&rft.epage=1128&rft.pages=1117-1128&rft.issn=1607-9264&rft.eissn=1607-9264&rft_id=info:doi/10.53106/160792642022092305020&rft_dat=%3Cproquest_cross%3E2718383840%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2718383840&rft_id=info:pmid/&rfr_iscdi=true